Physics 10154 - Exam #11B

Answer the following two questions. Be sure to clearly indicate your answer with a circle or box. Show all work. If I cannot see how you arrived at an answer, I will deduct points!

- 1. When a gas goes from state A --> B --> C on the PV diagram below, 1300 J of heat is added to the gas.
- a) What is the change in internal energy of the gas?
- b) If the gas goes from A --> D --> C on the PV diagram, how much heat is added to the gas?
- c) What is the work done by the gas when it goes in the cycle A \longrightarrow B \longrightarrow C \longrightarrow D?

P (atm)

4.0

A

$$= (4 \times 10^{5})(9 \times 10^{-3}) = 3600 \text{ T}$$
 $= (4 \times 10^{5})(9 \times 10^{-3}) = 3600 \text{ T}$
 $= 2300 \text{ T}$

V (L)

5)
$$W_{bygas}(A \rightarrow D \rightarrow C) = 0 + (1 \times 10^{5})(9 \times 10^{-3}) = 900 \text{ T}$$

$$\Delta U_{AC} = -W_{bygas} + Q$$

$$2300 = -900 + Q \qquad \boxed{Q = 3200 \text{ T}}$$

- 2. A 2.5 kg block is attached to a horizontally-oriented spring on a frictionless table with a spring constant of 2200 N/m. The spring is stretched to a distance of L and the block is released from rest to oscillate back and forth.
- a) What is the maximum speed of the block as it oscillates back and forth? Answer in terms of L (i.e. 5.6L or 0.35L).
- b) At what distance from the equilibrium point is the block's speed 25% of its maximum possible value? Answer in terms of L.
- c) How many oscillations does the spring complete per minute?

b)
$$V = \sqrt{\frac{1}{m}} = \sqrt{\frac{1}{m}(L^2 - x^2)}$$

 $\frac{1}{m} = \frac{1}{m} =$

c)
$$T = 2\pi \sqrt{\frac{m}{E}} = 0,212 \text{ s}$$

$$N = \frac{605}{0.2125} = 280$$