Physics 10154-Quiz 8B

A quotation attributed to Archimedes, a famous Greek philosopher/mathematician: "Give me a lever long enough, a fulcrum, and a place to stand, and I can move the Earth!" (there are so many variants of this quotation, it is likely not legitimate, but it's still fun to think about).

In the figure below, a human is capable of exerting a vertically downward applied force of 720 Newtons on the end of the lever. At the other end of the lever is a mass of $98,600 \mathrm{~N}$, the equivalent of a loaded concrete mixing truck. This mass pushes down vertically on the end of the lever.

The lever makes an angle of 21.0° with respect to the horizontal, and the distance from the $98,600 \mathrm{~N}$ mass and the fulcrum is 18.0 cm along the lever. The fulcrum shown exerts a vertical normal force on the lever, and we will assume for simplicity that the lever itself has negligible mass.

What must be (a) the distance from the fulcrum to the person in order for the person to lift the enormous mass with an applied force of 720 N as shown, and (b) the value of the normal force? The length of the lever in the drawing is not to scale! Answer with 3 SF.

