Physics Formula Sheet

Unit Conversions

Length:1meter = 39.37 inches = 3.281 feet, 1km = 0.621 miles, 1mile = 5280 feet = 1609 metersMass:1amu (u) = 1.66 x 10^{-27} kgMass-Energy: (1 u) * 931.5 = Energy (MeV)Time:1hour = 3600 seconds, 1year = 365.25 days = 3.16 x 10^7 secVolume:1Liter = 1000 cm³ = 10⁻³ m³, 1gallon = 3.786 L = 3.786 x 10^{-3} m³ = 231 in³Force:1Newton = 1kg-m/s² = 0.2248 poundsAngular Measure:Irev = 360° = 2 π radEnergy:1Joule = 0.239 cal = 0.738 ft·lb, 1kw·hr = 3.6 x 10^6 J, 1eV = 1.60 x 10^{-19} JPressure:1atm = 1.013 x 10^5 Pascals (N/m²) = 29.92 inches or 760 mm of HgTemperature:T_F = 1.8*T_c + 32, T_c = $0.556*(T_F - 32)$, T_K = T_c + 273Density:1g/cm³ = 1000 kg/m³

Physical Constants

<u>Mass of Earth</u>: $M_E = 5.98 \times 10^{24} \text{ kg}$ <u>Mass of Sun</u>: $M_S = 1.99 \times 10^{30} \text{ kg}$ <u>Gravitational Constant</u>: $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$

<u>Electon mass</u>: m_e = 0.0005486 u = 9.11 x 10⁻³¹ kg <u>Neutron mass</u>: m_n = 1.008665 u = 1.67 x 10⁻²⁷ kg

Boltzmann's Constant: k_B = 1.38 x 10⁻²³ J/KAvogadIdeal Gas Constant:R = 8.31 J/mol-K = 0.0821 L·atm/mol·KStefan-Boltzmann Radiation Constant: σ = 5.67 x 10⁻⁸ W/m²·K⁴

<u>Specific heat of water</u>: $c_{water} = 4186 \text{ J/kg} \cdot ^{\circ}\text{C}$ <u>Specific heat of ice</u>: $c_{ice} = 2090 \text{ J/kg} \cdot ^{\circ}\text{C}$ <u>Specific heat of steam</u>: $c_{steam} = 2010 \text{ J/kg} \cdot ^{\circ}\text{C}$

<u>Coulomb constant</u>: $k_c = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$ <u>Fundamental charge</u>: $e = 1.60 \times 10^{-19} \text{ C}$ <u>Planck's constant</u>: $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$

Basic Trigonometry

<u>Radius of Earth</u>: $R_E = 6.38 \times 10^6 \text{ m}$ <u>Earth-Sun distance</u>: $r_E = 1.5 \times 10^{11} \text{ m}$ Speed of Light: $c = 3.0 \times 10^8 \text{ m/s}$

<u>Proton mass</u>: $m_p = 1.007276 \text{ u} = 1.67 \text{ x} 10^{-27} \text{ kg}$ <u>Helium mass</u>: $m_{He} = 4.002602 \text{ u} = 6.64 \text{ x} 10^{-27} \text{ kg}$

<u>Avogadro's #</u>: $N_A = 6.023 \times 10^{23}$ molecules/mole mol·K

<u>Latent heat of fusion</u>: $L_f = 333,000 \text{ J/kg}$ Latent heat of vaporization: $L_v = 2.26 \times 10^6 \text{ J/kg}$

Permittivity of free space: $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N}\cdot\text{m}^2$ Permeability of free space: $\mu_0 = 1.26 \times 10^{-6} \text{ T}\cdot\text{m/A}$ Rydberg constant: $R_{\rm H} = 1.097 \times 10^7 \text{ m}^{-1}$

Motion with Constant Acceleration

Average velocity: $\mathbf{v}_{avg} = \Delta \mathbf{x} / \Delta t$ <u>Multi-part motion</u>: $\Delta \mathbf{x}_1 = \mathbf{v}_{avg,1}t_1$, $\Delta \mathbf{x}_2 = \mathbf{v}_{avg,2}t_2$, ... $\Delta \mathbf{x}_{tot} = \Delta \mathbf{x}_1 + \Delta \mathbf{x}_2 + ... = \mathbf{v}_{avg,tot}t_{tot}$ <u>Acceleration</u>: $\mathbf{a} = \Delta \mathbf{v} / \Delta t = (\mathbf{v} - \mathbf{v}_0) / t$ If $\mathbf{a} = \text{constant}$, then $\mathbf{v}_{avg} = (\mathbf{v} + \mathbf{v}_0) / 2$ where $\Delta \mathbf{x} = \text{displacement}$, $\mathbf{v} = \text{final velocity}$ $\mathbf{v}_0 = \text{initial velocity}$

	Equation of Motion	<u>Missing</u>	
	(1) $\Delta \mathbf{x} = \frac{1}{2} (\mathbf{v} + \mathbf{v}_0) \mathbf{t}$	а	
	(2) $v = v_0 + at$	Δx	
A _x)	$(3) \Delta \mathbf{x} = \mathbf{v}_0 t + \frac{1}{2} \mathbf{a} t^2$	v	
	(4) $\Delta \mathbf{x} = \mathbf{v}t - \frac{1}{2}\mathbf{a}t^2$	\mathbf{v}_0	
	(5) $v^2 = v_0^2 + 2a\Delta x$	t	

Forces (Newtons)

 $\sum \mathbf{F} = \mathbf{ma} = \sum \sum \mathbf{F}_x = \mathbf{ma}_x$, $\sum \mathbf{F}_y = \mathbf{ma}_y$ or $\sum \mathbf{F}_{\parallel} = \mathbf{ma}_{\parallel}$, $\sum \mathbf{F}_{\parallel} = \mathbf{ma}_{\parallel}$

Force Definitions (Magnitude and Direction)

<u>Gravity</u>: $\mathbf{F}_{g} = |mg|$, downward, where $g = 9.8 \text{ m/s}^2$ <u>Applied</u>: $\mathbf{F}_{App} = |\text{variable}|$, |variable| (must be defined in problem statement or solved for) <u>Tension</u>: $\mathbf{F}_{T} = |\text{variable}|$, inward from each end of rope/string, equal and opposite at each end <u>Normal</u>: $\mathbf{F}_{N} = |\sum \mathbf{F}_{\perp}|$ (sum of all other \perp forces), \perp to and out of surface. <u>Kinetic Friction</u>: $\mathbf{F}_{KF} = |\mu_{k}\mathbf{F}_{N}|$, opposing motion, where μ_{k} is the coefficient of kinetic friction. <u>Static Friction</u>: $\mathbf{F}_{SF} = |\sum \mathbf{F}_{\ell}|$ (sum of all other ℓ forces), opposite direction of $\sum \mathbf{F}_{\ell}$.

Static Friction (max value): $\mathbf{F}_{SF,max} = |\mu_s \mathbf{F}_N|$ where μ_s is the coefficient of static friction. <u>Spring</u>: $\mathbf{F}_{spr} = |\mathbf{k}_s \Delta \mathbf{x}|$, restoring, $\mathbf{k}_s = spring$ constant (N/m) and $\Delta \mathbf{x} = displacement$ from equilibrium <u>"Centrifugal"</u>: $\mathbf{F}_{cf} = |\mathbf{mv}^2/r|$ or $|\mathbf{mr}\mathbf{W}^2|$, radially outward, where r = radius of circular motion <u>Buoyancy</u>: $\mathbf{F}_{B} = |\rho_{f} V_{f} g|$, upward. ρ_{f} = fluid density, V_{f} = volume of displaced fluid <u>Newtonian Gravity</u>: $F_{grav} = \left| \frac{GM_1M_2}{r^2} \right|$, attractive M₂ where $G = 6.67 \times 10^{-11} N - m^2 / kg^2$, r = distance between centers of M_1 and M_2 . <u>Electric</u>: $F_{electric} = \left| \frac{k_c q_1 q_2}{r^2} \right|$, like charges repel, opposites attract. where k_{c} = Coulomb constant (8.99 x $10^9 \ \text{N}\text{-}\text{m}^2/\text{C}^2)\text{,}$ r = distance between centers of charges q_1 and q_2 More generally, $F_{\rm Electric}=qE$, where E = Electric field in which q is immersed or $|q\mathbf{vB}\sin\theta|$ for moving charges, Magnetic: $\mathbf{F}_{\mathbf{B}} = q\mathbf{v} \times \mathbf{B}$ or $l \mathbf{I} \times \mathbf{B}$ or $|l \mathbf{IB} \sin \theta|$ for current-carrying wires (l = length of wire), <u>direction</u>: right-hand rule #1 ($\mathbf{F} = \text{palm}$, \mathbf{v} or $\mathbf{I} = \text{thumb}$, $\mathbf{B} = \text{fingers}$) where θ is the angle between **v** and **B** or between **I** and **B**. (cross product) Energy and Work (Joules) Work done by a Force Work/Energy Units: 1 Joule = 1 kg-m²/s², 1 Watt = 1 Joule/sec F <u>Method #1</u>: $W_F = |\mathbf{F}| \cdot |\Delta \mathbf{s}| \cdot \cos \theta$, where θ is the angle between \mathbf{F} and $\Delta \mathbf{s}$ θ $\Delta \mathbf{s}$ <u>Method #2</u>: $W_F = -\Delta U_F$ or $U_{initial} - U_{final}$, where U_F is the potential energy related to the force <u>Method #3</u>: $W_{F1} + W_{F2} + W_{F3} = W_{tot}$. Find W_{F1} , W_{F2} and W_{tot} , then solve for W_{F3} . Potential Energy (only conservative forces have an associated potential energy) <u>Gravity</u> (relative): $\Delta U_{grav} = mg \Delta y$ (only works for small distances over which $g = 9.8 \text{ m/s}^2$) <u>Newtonian Gravity</u> (absolute): $U_{grav} = -\frac{GM_1M_2}{r}$ (see diagram above) <u>Spring</u>: $U_{spr} = \frac{1}{2}k_s(\Delta x)^2$, where $k_s = spring$ constant (N/m), $\Delta x = displacement$ from equilibrium <u>Electric</u> (relative): $\Delta U_{\text{electric}} = q_1 \Delta V_2$, where q_1 is a charge immersed in a potential V_2 . Electric (absolute): $U_{electric} = \frac{k_c q_1 q_2}{r}$, where r = distance between centers of charges q_1 and q_2 <u>Work-Energy and Energy Conservation</u>: U = potential energy, $K = \frac{1}{2}mv^2$, kinetic energy <u>Mechanical Energy</u>: E = K + U. E is conserved ($\Delta E = 0$) if only conservative forces do work <u>Work-Energy Theorem</u>: $W_{tot} = \sum W_F = \Delta K$. Power (Watts) and Energy Power: P = Energy/time or Work/time, P = $|\mathbf{F}| \cdot |\mathbf{v}| \cdot \cos\theta$, where θ is the angle between \mathbf{F} and \mathbf{v}

Momentum (kg-m/s) and Collisions

r

Δθ

orbit

h

Δs

If masses stick together after collision, then $v_{1f} = v_{2f} = v_f$ Elastic Collisions: If $\Delta p = 0$ and $\Delta K = 0$, then:

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_{2i} \text{ and } v_{2f} = \frac{2m_1}{m_1 + m_2} v_{1i} + \frac{m_2 - m_1}{m_1 + m_2} v_{2i}$$

<u>Shortcut</u>: Note that if $m_1 = m_2$, then $v_{1f} = v_{2i}$ and $v_{2f} = v_{1i}$.

Rotational Motion and Newtonian Gravity

<u>Angular equivalents</u>: $\Delta \theta = \Delta s/r$, $\omega = v/r$, $\alpha = a_{tan}/r$ <u>Centripetal acceleration</u>: $a_{cp} = v^2/r$ or $r\omega^2$, directed radially inward <u>"Centrifugal force"</u>: $\mathbf{F}_{cf} = mv^2/r$ or $mr\omega^2$, directed radially outward

Torque (Newton-meters)

Torque (Cross Product): $\tau = \mathbf{r} \times \mathbf{F}$ or $|\mathbf{r}| \cdot |\mathbf{F}| \cdot \sin\theta$, where **r** = distance vector from pivot to point of line of action application of the force, and θ = angle between tails of vectors **r** and **F**. <u>Torque (Lever Arm)</u>: $\tau = |\mathbf{F}\ell|$, where $\ell = \perp$ distance to line of action or "lever arm". thin rod Sign Convention: τ is negative if directed clockwise (cw) τ is positive if directed counter-clockwise (ccw). r Moment of Inertia: I = AMR² (kg·m²), where pivot R = radius of object and A = number from 0-1 depending upon the nature of the object $I_{ring} = MR^2$ $I_{point mass} = Mr^2$, where r = distance from object to axis $I_{cylinder} = \frac{1}{2}MR^2$ $I_{sphere} = 0.4MR^2$ object is revolving around <u>Newton's 2nd Law (Angular Version)</u>: $\Sigma \tau = I\alpha$ Static Equilibrium: $\sum F_x = \sum F_y = \sum \tau = 0$

Rotational Kinetic Energy (Joules) and Angular Momentum (kg-m/s)

Rotational Kinetic Energy: $K = \frac{1}{2}mv^2$ (translational KE) + $\frac{1}{2}I\omega^2$ (rotational KE) <u>Rolling without slipping</u>: $v_{center-of-mass} = v_{tan}$, at rim = $r\omega$. <u>Angular Momentum</u>: $L = I\omega$. Just as $F_{avg} = \Delta p/\Delta t$, $\tau = \Delta L/\Delta t$. <u>Conservation Laws</u>: if $\sum F_{ext} = 0$, then $\Delta p = 0$ and if $\sum \tau_{ext} = 0$, $\Delta L = 0$. If $\Delta L = 0$, then $I_{1i}\omega_{1i} + I_{2i}\omega_{2i} = I_{1f}\omega_{1f} + I_{2f}\omega_{2f}$.

<u>Harmonic Motion</u>	Spring Period:	т =	$2\pi \sqrt{\frac{m}{k_s}}$	Pendulum Oscillations:	$T = 2\pi \sqrt{1}$	$\frac{\ell}{g}$
------------------------	----------------	-----	-----------------------------	------------------------	---------------------	------------------

Spring Oscillations and Circular Motion:

<u>Amplitude</u> : $A = x_{max}$
<u>Position</u> : $x(t) = A \cos(\omega t)$
<u>Velocity</u> : $v(t) = r\omega = A\omega \sin(\omega t)$
<u>Acceleration</u> : $a(t) = r\omega^2 = A\omega^2 \cos(\omega t)$

<u>Frequency</u>: f = 1/T<u>Angular Frequency</u>: $\omega = 2\pi f = 2\pi/T$ <u>Mechanical Energy</u>: $E = \frac{1}{2}mv^2 + \frac{1}{2}kx^2 = \frac{1}{2}kA^2$

<u>Fluids</u>

Thermal Physics

<u>Thermal Expansion (length)</u>: $\Delta L = L_0 \alpha \Delta T$, where α = linear expansion coefficient, ΔT in °C or K. <u>Thermal Expansion (area)</u>: $\Delta A = A_0(2\alpha)\Delta T$ or $A_0\beta\Delta T$, where β = area expansion coefficient <u>Thermal Expansion (volume)</u>: $\Delta V = V_0(3\alpha)\Delta T$ or $V_0\gamma\Delta T$, where γ = volume expansion coefficient

Calorimetry and Phase Changes

<u>Heat</u>: Q (Joules), $\Delta Q = mc\Delta T$, where c = specific heat (J/kg·°C), ΔT in °C or K. <u>Phase changes</u>: $\Delta Q = +mL_f$ (melting, solid -> liquid), $-mL_f$ (freezing, liquid -> solid) $\Delta Q = +mL_v$ (boiling, liquid -> gas), $-mL_v$ (condensing, gas -> liquid) where L_f = latent heat of fusion, L_v = latent heat of vaporization <u>Thermal Equilibrium</u>: $\Delta Q_1 + \Delta Q_2 + \Delta Q_3 + ... = 0$

<u>Heat Transfer (Watts)</u>

<u>Conduction</u>: Power (P) = $\Delta Q/\Delta t$ = Area* $\Delta T/R$ -value, where R-value = $\ell_1/k_1 + \ell_2/k_2 + \ell_3/k_3 + ...$ and ℓ = layer thickness, k = thermal conductivity (Joule/s·m·°C) of each layer <u>Radiation</u>: Power (P) = $\Delta Q/\Delta t$ = σ *(Area)*e*(T⁴ - T₀⁴), where σ = S-B constant (5.67 x 10⁻⁸ W/m²·K⁴), e = emissivity (0-1), T = object temperature, T₀ = temperature of surroundings

Ideal Gases

$PV = nRT$ or $PV = Nk_bT$	R = Ideal gas constant (see pl)	m = total gas mass (kg)
$P = Pressure (N/m^2 \text{ or } Pa)$	k_b = Boltzmann's constant (see p1)	<pre>M = molar mass (kg/mole)</pre>
$V = Volume (m^3)$	n = # of moles	n = m/M
T = Temperature (K)	N = # of molecules	$n = N/N_A$ (see pl for N_A)

Thermodynamics

Sound Waves

Electric Forces (Newtons) and Electric Fields (N/C or V/m)

Electric Field (point charge): $|\mathbf{E}| = k_c q/r^2$, direction: away from + charges, toward - charges Electric Field (sheet of charge): $|\mathbf{E}| = 2\pi k_c \sigma$, where σ = surface charge density (Q/Area) Parallel sheets/plates: $|\mathbf{E}| = 4\pi k_c \sigma$ inside, 0 outside, assuming equal and opposite Q on plates. Conductors: $|\mathbf{E}| = 0$ inside, all charge resides on surface, no charge enclosed by surface.

Electric Potential (Volts) and Electric Potential Energy (Joules)

DC Circuits

 $\frac{\text{Current}: I (Amperes) = \Delta Q/\Delta t}{\text{Resistance}: R (Ohms) = \rho L/A, where ρ = resistivity (Ohm·meters), L = wire length, A = wire area$ $<u>Ohm's Law</u>: <math>\Delta V$ (Volts) = ±IR (current travels from higher to lower voltage) <u>Power</u>: P (Watts) = I²R (power dissipated by resistor) = I\Delta V (power supplied by source)

Resistor Circuits

Series Resistors: $R_{tot} = R_1 + R_2$, $I_{tot} = I_1 = I_2$, $\Delta V_{tot} = \Delta V_1 + \Delta V_2$ Parallel Resistors: $1/R_{tot} = 1/R_1 + 1/R_2$, $I_{tot} = I_1 + I_2$, $\Delta V_{tot} = \Delta V_1 = \Delta V_2$

<u>Kirchoff's Laws</u>

<u>Loop Rule</u>: The sum of all voltage drops around a loop is zero. $\sum \Delta V = 0$. <u>Junction Rule</u>: At any junction, the sum of incoming currents = sum of outgoing currents.

Capacitors

<u>Capacitance</u>: C (Farads) = $Q/\Delta V$ = Area* ϵ_0/d = Area/ 4π *kc*d <u>Dielectrics</u>: K(kappa) = Dielectric constant. C_{new} = KC_{original} <u>Energy Stored by a Capacitor</u>: U_E = $\frac{1}{2}C\Delta V^2$ = $\frac{1}{2}Q\Delta V$ = $Q^2/2C$

RC Circuits (initially uncharged)

<u>**RL Circuits (with I_{initial} = 0 at t = 0)</u></u>**

Inductive Time Constant: $\tau_{\rm L} = L/R$ <u>Current</u>: $I(t) = \frac{\varepsilon}{R} (1 - e^{-t/\tau_L})$, $I_{\rm max} = \varepsilon/R$

Inductor Voltage:
$$\Delta V_L = \varepsilon e^{-t/\tau_L}$$
, $\Delta V_{max} = \varepsilon$

Magnetic Fields (Tesla) and Magnetic Forces (Newtons)

Right-hand rules

RHR #1 (cross products): A = B x C, A = palm, B = thumb, C = fingers
RHR #2 (magnetic field of straight wire): I = thumb, B = curl of fingers of right hand
RHR #3 (magnetic field of wire loop): I = curl of fingers of right hand, B_{loop} = thumb

<u>Magnetic Field of a Wire</u>: $|\mathbf{B}| = \mu_0 \mathbf{I}/2\pi r$, Direction: RHR #2 <u>Magnetic Field of a Loop</u>: $|\mathbf{B}| = \mu_0 \mathbf{I}/2R$ within the plane of the loop and inside loop, where R = radius of loop, Direction: RHR #3 <u>Magnetic Field of a Solenoid</u>: $|\mathbf{B}| = \mu_0 \mathbf{NI}/L$ within the cylindrical volume of solenoid, N = # of turns, L = length of solenoid, use RHR #3

Magnetic Force

 $\begin{array}{l} \hline Force \ on \ a \ moving \ charge: \ \mathbf{F}_{B} \ = \ q\mathbf{v} \ \mathbf{x} \ \mathbf{B}, \ |\mathbf{F}_{B}| \ = \ |q\mathbf{v}\mathbf{B}\mathrm{sin}(\theta)|, \ \theta \ = \ angle \ between \ v \ and \ B. \ RHR \ \#1 \\ \hline \underline{Circular \ motion:} \ Circular \ path \ of \ charge \ in \ a \ magnetic \ field \ has \ radius \ r \ = \ mv/qB \\ \hline \underline{Force \ on \ a \ current-carrying \ wire:} \ \mathbf{F}_{B} \ = \ \ell \mathbf{I} \ \mathbf{x} \ \mathbf{B}, \ |\mathbf{F}_{B}| \ = \ |\ell \mathbf{IB}\mathrm{sin}(\theta)|, \ \ell \ = \ length \ of \ wire. \ RHR \ \#1 \\ \end{array}$

Magnetic Torque

<u>Magnetic Moment</u>: μ (T·m²) = NIA, where N = # of turns, A = area of loop, direction is consistent with B_{loop} from RHR #3. <u>Area vector</u>: A is normal to plane of loop, typically same direction as magnetic moment <u>Magnetic Torque</u>: $|\tau_B| = |NB_{ext}IA \sin(\theta)|$, θ = angle between area vector and external magnetic field $= \mu \times B_{ext} = |\mu B_{ext} \sin(\theta)|$ <u>Direction</u>: tends to align area vector (or μ) with B_{ext} direction.

Electromagnetic Induction

<u>Average voltage drop across inductor</u>: $\Delta V_L = \pm L(\Delta I/\Delta t)$ (for instantaneous ΔV_L - see RL circuits)

Light and Optics

Energy Density of Light: $u_{tot} = u_{electric} + u_{magnetic} = \frac{1}{2}\epsilon_0 E_{rms}^2 + \frac{1}{2}(1/\mu_0) B_{rms}^2$ or $u_{tot} = \epsilon_0 E_{rms}^2 = (1/\mu_0) B_{rms}^2$ Intensity of Light: S = Power/Area = c*u_{total}, for light spread out over sphere, S = Power/4 π r²

Doppler Effect

<u>General case (both source and observer moving)</u>: Plus sign when source and observer come closer (blueshift) f_a Minus sign when source and observer move apart (redshift)

$$f_{obs} = f_{src} \left(1 \pm \frac{v_{rel}}{v_{wave}} \right)$$

<u>Alternate formula for Doppler effect</u>: $\frac{\Delta \lambda}{\lambda} = \frac{v_{relative}}{c}$

Wave Equation:
$$v = f\lambda$$

<u>Index of refraction</u>: n = c/v, where c = speed of light in vacuum, v = speed of light in medium <u>Wavelength of light</u>: $\lambda_n = \lambda_0/n$ (wavelength of light shortens when it enters some medium) <u>Snell's Law</u>: $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$, light turns toward normal when entering higher index <u>Critical Angle</u>: $\theta_{crit} = \sin^{-1}(n_1/n_2)$, max angle of incidence for light to pass from $n_2 \rightarrow n_1$. <u>Polarization</u>

<u>Brewster's Angle</u>: $\theta_B = \tan^{-1}(n)$. If $\theta_{incidence} = \theta_B$, ray is polarized parallel to surface <u>Unpolarized light through polarizer</u>: $I_{final} = \frac{1}{2}I_{initial}$

<u>Polarized light through polarizer</u>: $I_{\text{final}} = I_{\text{initial}} \cos^2(\theta)$,

where θ = angle between polarized light and axis of polarizer

Lenses and Mirrors	Lenses		<u>Mirrors</u>
p = object distance	nt "real" n"wirtual"	n+ "real"	
q = image distance		pi ieai	
f = focal length	q- "virtual" d+ "real"	q+ "real"	q- "virtual"
R = radius of curvature = 2f			
M = magnification = -q/p	Converging: f+		Convex: f-
If M+, image is upright			
If M-, image is inverted	p+ "real" / p- "virtual"	p+ "real"	p- "virtual"
<u>Image size</u> : himage = $ M h_{object}$	q- "virtual") (q+ "real"	q+ "real"	q- "virtual"
<u>Optics Equation</u> : $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$			Concave: f+
P q J	Diverging: f-		

Interference and Diffraction (light waves)

d = slit separation, L = distance to screen, y = distance from center of pattern on wall,

 δ = path difference between two sources of light, θ = angular distance from center of pattern.

Two-slit interference (m = order number)

 $\frac{\text{Constructive Interference}}{\text{Destructive Interference}} \text{ (bright fringes) where } \delta = dsin\theta = dy/L = 0, \lambda, 2\lambda, 3\lambda, \dots (m\lambda)$ $\frac{\text{Destructive Interference}}{\text{Interference}} \text{ (dark fringes) where } \delta = dy/L = 0.5\lambda, 1.5\lambda, 2.5\lambda, \dots (m + \frac{1}{2})\lambda$ Single-slit interference

a = slit width, dark fringes where a sin θ = ay/L = λ , 2 λ , 3 λ , ...

<u>Resolution</u>: θ_{min} = separation/distance = λ/D (slit) or 1.22 λ/D (circular aperture) Diffraction grating

d = groove separation, bright light reflected where dsin θ = λ , 2 λ , 3 λ , …

Thin Films

<u>Phase shift due to reflection</u>: $\delta = \frac{1}{2}$ wave if reflecting off higher index, otherwise 0 <u>Phase shift due to extra distance in film</u>: $\delta = 2tn/\lambda_0$ waves where t = film thickness Constructive Interference (CI): $\delta_2 - \delta_1 = 0$, 1, 2, ... waves, DI: $\delta_2 - \delta_1 = 0.5$, 1.5, 2.5 waves

Modern Physics

Photoelectric Effect

<u>Momentum of a photon</u>: $p = Energy/c = h/\lambda$

Hydrogen spectrum

Energy levels in Hydrogen: $E_n = -13.6/n^2$ eV, where 1 eV = 1.60 x 10⁻¹⁹ J Electron absorption/emission: $\frac{1}{\lambda} = R_H \left| \frac{1}{n_1^2} - \frac{1}{n_2^2} \right|$, where R_H = Rydberg constant (1.097 x 10⁷ m⁻¹) Blackbody Radiation - Wien's Law: $\lambda_{max}T = 0.029 \text{ m} \cdot \text{K}$

Radioactivity

<u>Half-life</u>: T_{k} = Time for half of the remaining radioactive atoms in a sample to decay <u>Decay constant</u>: $\lambda = 0.693/T_{k} s^{-1}$ <u>Radioactive decay</u>: $N(t) = N_0 e^{-\lambda t}$

<u>Radioactivity</u>: $a(t) = \lambda N(t)$, $a(t) = a_0 e^{-\lambda t}$, units: Becquerels or Bq (decays/sec)

Biological Effects of Radiation

Nuclear Physics

<u>Binding Energy</u>: $BE = \Delta mc^2$, where $\Delta m = M_{nucleus} - N_{protons}m_{proton} - N_{neutrons}m_{neutron}$ Mass-Energy calculations: $E(MeV) = Mass(u) * 931.5 \text{ MeV}/u \cdot c^2$

Masses of Selected Isotopes:

Proton:	1.00727	6 u					
Neutron:	1.00866	5 u					
Electron:	0.0005	486 u					
Hydrogen	(¹ H):	: 1.007825 u	Deute	rium (² H): 2.014102 u	Triti	.um (³ H):	3.016050 u
Helium	³ He:	3.016030 u	⁴ He:	4.002602 u			
Boron	¹¹ B:	11.009305 u					
Carbon	¹² C:	12.000000 u	¹³ C:	13.003355 u	¹⁴ C:	14.00324	1 u
Manganese	⁵⁵ Mn:	54.938047 u					
Iron	⁵⁶ Fe:	55.934939 u					
Cobalt	⁵⁹ Co:	58.933198 u	⁶⁰ Co:	59.933819 u			
Strontium	⁹⁰ Sr:	89.907738 u					
Krypton	⁹² Kr:	91.926270 u					
Barium	¹⁴¹ Ba:	140.914363 u					
Radium	²²⁶ Ra:	226.025402 u					
Uranium	²³⁵ U:	235.043924 u	²³⁸ U:	238.050784 u			
Plutonium	²⁴² Pu:	242.058737 u					