Physics Formula Sheet

Unit Conversions

Length: 1 meter $=39.37$ inches $=3.281$ feet, $1 \mathrm{~km}=0.621 \mathrm{miles}, 1 \mathrm{mile}=5280$ feet $=1609 \mathrm{~meters}$
Mass: 1 amu $(u)=1.66 \times 10^{-27} \mathrm{~kg} \quad$ Mass-Energy: (1 u) * 931.5 = Energy (MeV)
Time: 1 hour $=3600$ seconds, 1 year $=365.25$ days $=3.16 \times 10^{7} \mathrm{sec}$
Volume: 1 Liter $=1000 \mathrm{~cm}^{3}=10^{-3} \mathrm{~m}^{3}$, 1 gallon $=3.786 \mathrm{~L}=3.786 \mathrm{x} 10^{-3} \mathrm{~m}^{3}=231$ in
Force: 1 Newton $=1 \mathrm{~kg}-\mathrm{m} / \mathrm{s}^{2}=0.2248$ pounds \quad Angular Measure: 1 rev $=360^{\circ}=2 \pi \mathrm{rad}$
Energy: 1 Joule $=0.239 \mathrm{cal}=0.738 \mathrm{ft} \cdot \mathrm{lb}, 1 \mathrm{kw} \cdot \mathrm{hr}=3.6 \mathrm{x} 10^{6} \mathrm{~J}, 1 \mathrm{eV}=1.60 \mathrm{x} 10^{-19} \mathrm{~J}$
Pressure: 1 atm $=1.013 \times 10^{5}$ Pascals $\left(\mathrm{N} / \mathrm{m}^{2}\right)=29.92$ inches or 760 mm of Hg
Temperature: $T_{F}=1.8 * T_{C}+32, T_{C}=0.556 *\left(T_{F}-32\right), T_{K}=T_{C}+273$

Density: $1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad$ Radioactivity: $1 \mathrm{~Bq}=2.7 \mathrm{x} 10^{-11} \mathrm{Ci}$

Physical Constants

Basic Trigonometry

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \cos \theta=\mathrm{adj} / \mathrm{hyp} \\
& \sin \theta=\mathrm{opp} / \mathrm{hyp} \\
& \tan \theta=\mathrm{opp} / \mathrm{adj} \\
& \theta=\tan ^{-1}(\mathrm{opp} / \mathrm{adj})
\end{aligned}
$$

Motion with Constant Acceleration

```
Average velocity: vavg = \Deltax/\Deltat
```



```
            \Deltax
Acceleration: a = \Deltav/\Deltat = (v - vo)/t
    If a = constant, then vavg = (v + vo)/2
where }\Delta\textrm{x}=\mathrm{ displacement,
    v = final velocity
    vo = initial velocity
```


Equation of Motion
(1) $\Delta \mathbf{x}=\frac{1}{2}\left(\mathbf{v}+\mathrm{v}_{0}\right) t$
(2) $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a t}$
(3) $\Delta \mathbf{x}=\mathbf{v}_{0} t+\frac{1}{2} a t^{2}$
(4) $\Delta \mathbf{x}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2}$
(5) $\mathbf{v}^{2}=\mathbf{v}^{2}+2 \mathbf{a} \Delta \mathbf{x}$

Forces (Newtons)

Force Definitions (Magnitude and Direction)
Gravity: $\mathbf{F}_{\mathbf{g}}=|\mathrm{mg}|$, downward, where $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Applied: $\mathbf{F}_{\text {App }}=\mid$ variable|, |variable| (must be defined in problem statement or solved for)
Tension: $\mathbf{F}_{\boldsymbol{T}}=\mid$ variable|, inward from each end of rope/string, equal and opposite at each end Normal: $\mathbf{F}_{\mathbf{N}}=\left|\sum \mathbf{F}_{\perp}\right|$ (sum of all other \perp forces), \perp to and out of surface.
Kinetic Friction: $\mathbf{F}_{\mathbf{K F}}=\left|\mu_{\mathrm{k}} \mathbf{F}_{\mathrm{N}}\right|$, opposing motion, where μ_{k} is the coefficient of kinetic friction. Static Friction: $\mathbf{F}_{\mathbf{s F}}=\left|\sum \mathbf{F} / /\right|$ (sum of all other // forces), opposite direction of $\sum \mathbf{F} / /$.

Static Friction (max value) : $\mathbf{F}_{\mathbf{S F}, \max }=\left|\mu_{\mathbf{s}} \mathbf{F}_{\mathbf{N}}\right|$ where μ_{s} is the coefficient of static friction. Spring: $\mathbf{F}_{\text {spr }}=\left|k_{s} \Delta \mathbf{x}\right|$, restoring, $k_{s}=$ spring constant (N / m) and $\Delta \mathbf{x}$ = displacement from equilibrium "Centrifugal": $\mathbf{F}_{\mathbf{c f}}=\left|m \mathbf{v}^{2} / r\right|$ or $\left|m \boldsymbol{m}^{2}\right|$, radially outward, where r = radius of circular motion Buoyancy: $\mathbf{F}_{\mathbf{B}}=\left|\rho_{\mathrm{f}} \mathrm{V}_{\mathrm{f}} \mathrm{g}\right|$, upward. $\rho_{\mathrm{f}}=\mathrm{fluid}$ density, $\mathrm{V}_{\mathrm{f}}=$ volume of displaced fluid Newtonian Gravity: $F_{g r a v}=\left|\frac{G M_{1} M_{2}}{r^{2}}\right|$, attractive

where $G=6.67 \times 10^{-11} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{kg}^{2}$,
$r=$ distance between centers of M_{1} and M_{2}.
Electric: $F_{\text {electric }}=\left|\frac{k_{c} q_{1} q_{2}}{r^{2}}\right|$, like charges repel, opposites attract.
where $\mathrm{k}_{\mathrm{c}}=$ Coulomb constant ($8.99 \times 10^{9} \mathrm{~N}-\mathrm{m}^{2} / \mathrm{C}^{2}$),
$r=$ distance between centers of charges q_{1} and q_{2}
More generally, $\quad F_{\text {Electric }}=q E \quad$, where E $=$ Electric field in which q is immersed

Magnetic: $\mathbf{F}_{\mathbf{B}}=q v \times \mathbf{x} \quad$ or $|q v B \sin \theta|$ for moving charges,
or $\ell \mathbf{I} \times \mathbf{B}$ or $|\ell I B \sin \theta|$ for current-carrying wires ($\ell=$ length of wire),
direction: right-hand rule \#1 ($\mathbf{F}=$ palm, \mathbf{v} or $\mathbf{I}=$ thumb, $\mathbf{B}=$ fingers)
where θ is the angle between \mathbf{v} and \mathbf{B} or between \mathbf{I} and $\mathbf{B .}$ (cross product)

Energy and Work (Joules)

Work done by a Force
Work/Energy Units: 1 Joule $=1 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}$, 1 Watt $=1$ Joule/sec
Method \#1: $W_{F}=|\mathbf{F}| \cdot|\boldsymbol{\Delta s}| \cdot \cos \theta$, where θ is the angle between \mathbf{F} and $\boldsymbol{\Delta} \mathbf{s}$
Method \#2: $W_{F}=-\Delta U_{F}$ or $U_{\text {initial }}-U_{f i n a l}$, where U_{F} is the potential energy
 related to the force
Method \#3: $W_{F 1}+W_{F 2}+W_{F 3}=W_{\text {tot }}$. Find $W_{F 1}, W_{F 2}$ and $W_{\text {tot }}$, then solve for $W_{F 3}$.
Potential Energy (only conservative forces have an associated potential energy)
Gravity (relative) : $\Delta U_{g r a v}=m g \Delta y$ (only works for small distances over which $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
Newtonian Gravity (absolute): $U_{g r a v}=-\frac{G M_{1} M_{2}}{r}$ (see diagram above)
Spring: $U_{s p r}=\frac{1}{2} k_{s}(\Delta x)^{2}$, where $k_{s}=$ spring constant $(N / m), \Delta x=$ displacement from equilibrium Electric (relative): $\Delta U_{\text {electric }}=q_{1} \Delta V_{2}$, where q_{1} is a charge immersed in a potential V_{2}.
Electric (absolute): $U_{\text {electric }}=\frac{k_{c} q_{1} q_{2}}{r}$, where $r=$ distance between centers of charges q_{1} and q_{2} Work-Energy and Energy Conservation: $U=$ potential energy, $K=\frac{1}{2} \mathrm{mv}^{2}$, kinetic energy Mechanical Energy: $E=K+U$. E is conserved ($\Delta E=0$) if only conservative forces do work Work-Energy Theorem: $\mathrm{W}_{\text {tot }}=\sum \mathrm{W}_{\mathrm{F}}=\Delta \mathrm{K}$.

Power (Watts) and Energy

Power: $P=$ Energy/time or Work/time, $P=|F| \cdot|\mathbf{v}| \cdot \cos \theta$, where θ is the angle between \mathbf{F} and \mathbf{v}

Momentum (kg-m/s) and Collisions

Momentum: $\mathbf{p}=\mathrm{mv}$, where $\mathbf{p}=$ momentum $(\mathrm{kg} \cdot \mathrm{m} / \mathrm{s})$, \mathbf{p} and \mathbf{v} share the same direction.
Impulse: $\Delta \mathbf{p}=\mathbf{F}_{\text {avg }} \Delta t$ or $\mathbf{F}_{\mathrm{avg}}=\Delta \mathbf{p} / \Delta \mathrm{t}$, where $\Delta \mathbf{p}=\mathbf{p}_{\text {final }}-\mathbf{p}_{\text {initial }}$.
Momentum Conservation: If $\sum \boldsymbol{F}_{\text {ext }}=0$, then $\Delta \mathbf{p}=0$, where $\sum \boldsymbol{F}_{\text {ext }}=$ sum of all external forces.
If $\boldsymbol{\Delta} \mathbf{p}=0$, then: $\boldsymbol{\Delta} \mathbf{p}_{\mathbf{x}}=0$ or $\mathrm{m}_{1} \mathbf{v}_{1 i, x}+\mathrm{m}_{2} \mathbf{v}_{2 i, x}=\mathrm{m}_{1} \mathbf{v}_{1 \mathrm{f}, \mathrm{x}}+\mathrm{m}_{2} \mathbf{v}_{\mathbf{2 f}, \mathrm{x}}$ and $\Delta \mathbf{p}_{\mathbf{y}}=0$ or $m_{1} \mathbf{v}_{1 i, \mathbf{y}}+\mathrm{m}_{2} \mathbf{v}_{2 i, \mathbf{y}}=\mathrm{m}_{1} \mathbf{v}_{1 \mathrm{f}, \mathrm{y}}+\mathrm{m}_{2} \mathbf{v}_{\mathbf{2 f}, \mathrm{y}}$
If masses stick together after collision, then $\mathbf{v}_{1 f}=\mathbf{v}_{\mathbf{2 f}}=\mathbf{v}_{\mathrm{f}}$
Elastic Collisions: If $\Delta \mathbf{p}=0$ and $\Delta K=0$, then:
$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i}$ and $v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}$
Shortcut: Note that if $m_{1}=m_{2}$, then $V_{1 f}=V_{2 i}$ and $V_{2 f}=v_{1 i}$.

Rotational Motion and Newtonian Gravity

Angular equivalents: $\boldsymbol{\Delta} \boldsymbol{\theta}=\boldsymbol{\Delta} \mathbf{s} / r, \boldsymbol{\omega}=\mathbf{v} / r, \boldsymbol{\alpha}=\mathrm{a}_{\mathrm{tan}} / r$
Centripetal acceleration: $\mathbf{a}_{\mathbf{c p}}=\mathbf{v}^{2} / r$ or $r \boldsymbol{\omega}^{2}$, directed radially inward

"Centrifugal force": $\mathbf{F}_{\mathbf{c f}}=\mathrm{mv} 2 / r$ or $m r \boldsymbol{\omega}^{2}$, directed radially outward

Motion with Constant α

$\boldsymbol{\Delta} \boldsymbol{\theta}=\frac{1}{2}\left(\omega+\omega_{0}\right) t$
$\omega=\omega_{0}+\alpha t$
$\boldsymbol{\Delta} \boldsymbol{\theta}=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\Delta \boldsymbol{\theta}=\omega t-\frac{1}{2} \alpha t^{2}$
$\boldsymbol{\omega}^{2}=\omega_{0}{ }^{2}+2 \boldsymbol{\alpha} \boldsymbol{\Delta} \boldsymbol{\theta}$

Orbital Motion (Earth)

rorbit $=R_{E}+h$, where $R_{E}=$ Radius of Earth, and $h=$ altitude above surface
$2 \pi r_{\text {orbit }}=$ VorbitT, where $T=$ orbital period
Equation of Orbital Velocity: $\quad v_{\text {orbit }}=\sqrt{\frac{G M}{r_{o r b i t}}}$
Kepler's 3rd Law of Orbits: $T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r_{\text {orbit }}^{3}$

Torque (Newton-meters)

Torque (Cross Product): $\boldsymbol{\tau}=\mathbf{r} \times \mathbf{F}$ or $|\mathbf{r}| \cdot|\mathbf{F}| \cdot \sin \theta$, where $\mathbf{r}=$ distance vector from pivot to point of application of the force, and
$\theta=$ angle between tails of vectors \mathbf{r} and \mathbf{F}.
Torque (Lever Arm): $\boldsymbol{\tau}=|\mathbf{F} \ell|$, where
$\ell=\perp$ distance to line of action or "lever arm".
Sign Convention: $\boldsymbol{\tau}$ is negative if directed clockwise (cw)
$\boldsymbol{\tau}$ is positive if directed counter-clockwise (ccw).
Moment of Inertia: $I=A M R^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$, where
 $R=$ radius of object and $A=$ number from $0-1$ depending upon the nature of the object
$I_{\text {ring }}=M R^{2} \quad I_{\text {point mass }}=M r^{2}$, where $r=$ distance from object to axis $I_{\text {cylinder }}=\frac{1}{2} M R^{2} \quad I_{\text {sphere }}=0.4 M R^{2} \quad$ object is revolving around
Newton's 2nd Law (Angular Version): $\sum \boldsymbol{\tau}=I \alpha$
Static Equilibrium: $\sum \mathrm{F}_{\mathrm{x}}=\sum \mathrm{F}_{\mathrm{y}}=\sum \boldsymbol{\tau}=0$
Rotational Kinetic Energy (Joules) and Angular Momentum (kg-m/s)
Rotational Kinetic Energy: $K=\frac{1}{2} m^{2}$ (translational $K E$) $+\frac{1}{2} I \omega^{2}$ (rotational $K E$)
Rolling without slipping: $\mathbf{v}_{\text {center-of-mass }}=\mathbf{v}_{\text {tan }}$, at rim $=r \boldsymbol{\omega}$.
Angular Momentum: $\mathbf{L}=\mathbf{I} \boldsymbol{\omega}$. Just as $\mathbf{F}_{\text {avg }}=\Delta \mathbf{p} / \Delta \mathrm{t}, \boldsymbol{\tau}=\Delta \mathrm{L} / \Delta \mathrm{t}$.
Conservation Laws: if $\sum \mathbf{F}_{\text {ext }}=0$, then $\Delta \mathbf{p}=0$ and if $\sum \boldsymbol{\tau}_{\text {ext }}=0, \Delta \mathbf{L}=0$.
If $\Delta \mathrm{L}=0$, then $\mathrm{I}_{1 \mathrm{i}} \boldsymbol{\omega}_{1 \mathrm{i}}+\mathrm{I}_{2 \mathrm{i}} \boldsymbol{\omega}_{2 \mathrm{i}}=\mathrm{I}_{1 \mathrm{f}} \boldsymbol{\omega}_{1 \mathrm{f}}+\mathrm{I}_{2 \mathrm{f}} \boldsymbol{\omega}_{2 \mathrm{f}}$.

Harmonic Motion

$$
\text { Spring Period: } T=2 \pi \sqrt{\frac{m}{k_{s}}} \quad \text { Pendulum Oscillations: } T=2 \pi \sqrt{\frac{\ell}{g}}
$$

Spring Oscillations and Circular Motion:

Amplitude: $\mathrm{A}=\mathrm{x}_{\max } \quad$ Frequency: $\mathrm{f}=1 / \mathrm{T}$
Position: $x(t)=A \cos (\omega t)$
Angular Frequency: $\omega=2 \pi f=2 \pi / T$
Velocity: $v(t)=r \omega=A \omega$ sin (ωt)
Mechanical Energy: $E=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2}$

Fluids

```
Density: }\rho=\mathrm{ Mass/Volume (kg/m}\mp@subsup{)}{}{3}). Since m = \rhoV, Fgrav = mg = \rhoVg for fluids.
Pressure: P = Force/Area ( }\textrm{N}/\mp@subsup{\textrm{m}}{}{2}\mathrm{ or Pascals)
Pascal's Principle: P
Continuity Equation: Q (flow rate) = (area)*(velocity) = Av (m
Bernoulli's Equation: P
```


Thermal Physics

Thermal Expansion (length) $: \Delta L=L_{0} \alpha \Delta T$, where $\alpha=$ linear expansion coefficient, ΔT in ${ }^{\circ} \mathrm{C}$ or K . Thermal Expansion (area): $\Delta A=A_{0}(2 \alpha) \Delta T$ or $A_{0} \beta \Delta T$, where $\beta=$ area expansion coefficient Thermal Expansion (volume): $\Delta \mathrm{V}=\mathrm{V}_{0}(3 \alpha) \Delta \mathrm{T}$ or $\mathrm{V}_{0} \gamma \Delta \mathrm{~T}$, where $\gamma=$ volume expansion coefficient

Calorimetry and Phase Changes

Heat: Q (Joules), $\Delta \mathrm{Q}=\mathrm{mc} \Delta \mathrm{T}$, where $\mathrm{C}=$ specific heat $\left(\mathrm{J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}\right), \Delta \mathrm{T}$ in ${ }^{\circ} \mathrm{C}$ or K.
Phase changes: $\Delta Q=+m L_{f}$ (melting, solid \rightarrow liquid), $-m L_{f}$ (freezing, liquid \rightarrow solid) $\Delta Q=+m L_{v}$ (boiling, liquid \rightarrow gas), $-m L_{v}$ (condensing, gas \rightarrow liquid) where $\mathrm{L}_{\mathrm{f}}=$ latent heat of fusion, $\mathrm{L}_{\mathrm{v}}=$ latent heat of vaporization
Thermal Equilibrium: $\Delta \mathrm{Q}_{1}+\Delta \mathrm{Q}_{2}+\Delta \mathrm{Q}_{3}+\ldots=0$

Heat Transfer (Watts)

and $\ell=$ layer thickness, $k=$ thermal conductivity (Joule/s $\cdot \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$) of each layer
Radiation: Power $(\mathrm{P})=\Delta \mathrm{Q} / \Delta \mathrm{t}=\boldsymbol{\sigma}$ (Area) ${ }^{*} \mathrm{e}^{*}\left(\mathrm{~T}^{4}-\mathrm{T}_{0}{ }^{4}\right)$, where $\boldsymbol{\sigma}=\mathrm{S}-\mathrm{B}$ constant (5.67 $\left.\mathrm{x} 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}\right)$,
$\mathrm{e}=$ emissivity $(0-1), \mathrm{T}=$ object temperature, $\mathrm{T}_{0}=$ temperature of surroundings

Ideal Gases

$\mathrm{PV}=\mathrm{nRT}$ or $\mathrm{PV}=\mathrm{Nk}_{\mathrm{b}} \mathrm{T} \quad \mathrm{R}=$ Ideal gas constant (see p1) $\mathrm{m}=$ total gas mass (kg)
$P=\operatorname{Pressure}\left(N / m^{2}\right.$ or Pa) $\quad k_{b}=$ Boltzmann's constant (see pl) $\quad M=$ molar mass (kg/mole)
$\mathrm{V}=$ Volume (m³) $\quad \mathrm{n}=\#$ of moles
T = Temperature (K) $N=\#$ of molecules
$\mathrm{n}=\mathrm{m} / \mathrm{m}$
$\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$ (see p1 for N_{A})

Thermodynamics

```
Calculating Work: \(\mathrm{W}_{\text {by gas }}=+\mathrm{P}_{\mathrm{avg}} \Delta \mathrm{V}\), \(\mathrm{W}_{\text {on gas }}=-\mathrm{P}_{\mathrm{avg}} \Delta \mathrm{V}\)
Internal Energy: \(\Delta U=Q-W_{b y}\) gas \(=Q+W_{\text {on }}\) gas, where \(U=\) Internal Energy (Joules),
                                    and \(\mathrm{Q}=\) heat added to gas (system)
Cyclic Process: \(\Delta U_{\text {cycle }}=0\)
Kinetic Energy of a Particle: \(\mathrm{KE}=\frac{1}{2} \mathrm{~m}_{\text {particle }} \mathrm{V}_{\mathrm{rms}}{ }^{2}=1.5 \mathrm{k}_{\mathrm{B}} \mathrm{T}\)
Internal Energy of a Gas: U = 1.5nRT \(=1.5 \mathrm{PV}\)
```


Sound Waves

Sound Waves in Air: $v_{\text {wave }}=\sqrt{\frac{\gamma k_{b} T}{m}}, \gamma=5 / 3$ for ideal monatomic gas, $7 / 5$ for ideal diatomic gas
$\mathrm{k}_{\mathrm{b}}=$ Boltzmann's constant (see p 1$)$, $\mathrm{m}=$ molecular mass (kg)
Sound Intensity: β (decibels) $=10 \log \left(I / I_{0}\right)$, where $I_{0}=$ hearing threshold, $1.0 \mathrm{x} 10^{-12} \mathrm{~W} / \mathrm{m}^{2}$. $\Delta \beta($ decibels $)=10 \log \left(I_{\text {big }} / I_{\text {small }}\right)$
Intensity of a Point Source: I (Watts $/ \mathrm{m}^{2}$) $=$ Power $/ 4 \pi r^{2}$
Wave Equation: $v=f \lambda$

Electric Forces (Newtons) and Electric Fields (N/C or V/m)

Electric Field (point charge): $|E|=k_{c} q / r^{2}$, direction: away from + charges, toward - charges Electric Field (sheet of charge): $|\mathbf{E}|=2 \pi \mathrm{k}_{\mathrm{c}} \sigma$, where $\sigma=$ surface charge density (Q/Area) Parallel sheets/plates: $|\mathrm{E}|=4 \pi \mathrm{k}_{\mathrm{c}} \boldsymbol{\sigma}$ inside, 0 outside, assuming equal and opposite Q on plates. Conductors: $|\mathbf{E}|=0$ inside, all charge resides on surface, no charge enclosed by surface.

```
Electric Potential (Volts) and Electric Potential Energy (Joules)
    Absolute Potential (point charges): V Vabs = kcq/r
    Relative Potential: }\Delta\mp@subsup{U}{E}{}=\mp@subsup{q}{1}{}\Delta\mp@subsup{V}{2}{}\mathrm{ for charge q}\mp@subsup{q}{1}{}\mathrm{ immersed in potential from source 2.
    Uniform Electric Fields: }\DeltaV=\pm\mp@code{E*(distance), E points from higher V to lower V.
    Sign Conventions: + charges tend to follow E lines from higher to lower potential (voltage)
                + charges tend to follow E lines from higher to lower potential energy
            If - charges follow E lines, they go against electric force and move from
            higher to lower potential (voltage), lower to higher potential energy
    Work-Energy: WE = - \UE = - q}\mp@subsup{|}{1}{}\Delta\mp@subsup{V}{2}{\prime}\mathrm{ for charge q}\mp@subsup{q}{1}{}\mathrm{ immersed in potential from source 2.
```


DC Circuits

```
Current: I (Amperes) = \DeltaQ/\Deltat
Resistance: R (Ohms) = \rhoL/A, where \rho = resistivity (Ohm•meters), L = wire length, A = wire area
Ohm's Law: }\DeltaV (Volts) = \pmIR (current travels from higher to lower voltage
    Power: P (Watts) = I'R (power dissipated by resistor)
    = I\DeltaV (power supplied by source)
```


Resistor Circuits

Series Resistors: $R_{\text {tot }}=R_{1}+R_{2}, I_{\text {tot }}=I_{1}=I_{2}, \Delta V_{\text {tot }}=\Delta V_{1}+\Delta V_{2}$
Parallel Resistors: $\quad 1 / R_{\text {tot }}=1 / R_{1}+1 / R_{2}, I_{\text {tot }}=I_{1}+I_{2}, \Delta V_{\text {tot }}=\Delta V_{1}=\Delta V_{2}$

Kirchoff's Laws

Loop Rule: The sum of all voltage drops around a loop is zero. $\sum \Delta V=0$.
Junction Rule: At any junction, the sum of incoming currents $=$ sum of outgoing currents.

Capacitors

Capacitance: C (Farads) $=\mathrm{Q} / \Delta \mathrm{V}=$ Area* $\epsilon_{0} / \mathrm{d}=$ Area $/ 4 \pi * \mathrm{k}_{\mathrm{C}} * \mathrm{~d}$
Dielectrics: $K(k a p p a)=$ Dielectric constant. $\quad C_{\text {new }}=K C_{\text {original }}$
Energy Stored by a Capacitor: $\mathrm{U}_{\mathrm{E}}=\frac{1}{2} \mathrm{C} \Delta \mathrm{V}^{2}=\frac{1}{2} \mathrm{Q} \Delta \mathrm{V}=\mathrm{Q}^{2} / 2 \mathrm{C}$

RC Circuits (initially uncharged)

Capacitive Time Constant: $\boldsymbol{\tau}_{\mathrm{C}}=\mathrm{RC}$
Charge: $Q(t)=C \varepsilon\left(1-e^{-t / \tau_{C}}\right), \mathrm{Q}_{\max }=\mathrm{C} \varepsilon \quad \quad$ Current $: \quad I(t)=(\varepsilon / R) e^{-t / \tau_{C}}, \mathrm{I}_{\max }=\varepsilon / \mathrm{R}$
Capacitor Voltage: $\Delta V_{C}=\varepsilon\left(1-e^{-t / \tau_{C}}\right), \Delta \mathrm{V}_{\max }=\varepsilon \quad$ Resistor Voltage: $\Delta V_{R}=\varepsilon e^{-t / \tau_{C}}, \Delta \mathrm{~V}_{\max }=\varepsilon$

Inductive Time Constant: $\boldsymbol{\tau}_{\mathrm{L}}=\mathrm{L} / \mathrm{R}$
Current: $I(t)=\varepsilon / R^{\left(1-e^{-t / \tau_{L}}\right), ~} \mathrm{I}_{\max }=\varepsilon / \mathrm{R} \quad$ Inductor Voltage: $\Delta V_{L}=\varepsilon e^{-t / \tau_{L}}, \Delta \mathrm{~V}_{\max }=\varepsilon$

Magnetic Fields (Tesla) and Magnetic Forces (Newtons)

Right-hand rules

RHR \#1 (cross products): $\mathbf{A}=\mathbf{B} \times \mathbf{C}, \mathbf{A}=$ palm, $\mathbf{B}=$ thumb, $\mathbf{C}=$ fingers
RHR \#2 (magnetic field of straight wire): $\mathbf{I}=$ thumb, $\mathbf{B}=$ curl of fingers of right hand
RHR \#3 (magnetic field of wire loop): $\mathbf{I}=$ curl of fingers of right hand, $B_{l o o p}=$ thumb

```
Magnetic Field of a Wire: \(|\mathbf{B}|=\mu_{0} \mathbf{I} / 2 \pi r\), Direction: RHR \#2
Magnetic Field of a Loop: \(|\mathbf{B}|=\mu_{0} I / 2 R\) within the plane of the loop and inside loop,
    where \(\mathrm{R}=\) radius of loop, Direction: RHR \#3
Magnetic Field of a Solenoid: \(|\mathbf{B}|=\mu_{0} N I / L\) within the cylindrical volume of solenoid,
    \(\mathrm{N}=\#\) of turns, \(\mathrm{L}=\) length of solenoid, use RHR \#3
```


Magnetic Force

Force on a moving charge: $\mathbf{F}_{\mathbf{B}}=q \mathbf{v} \mathbf{x} \mathbf{B},\left|\mathbf{F}_{\mathbf{B}}\right|=|q \operatorname{lnsin}(\theta)|, \theta=$ angle between v and $B . \operatorname{RHR} \# 1$
Circular motion: Circular path of charge in a magnetic field has radius $r=m v / q B$
Force on a current-carrying wire: $\mathbf{F}_{\mathbf{B}}=\ell \mathbf{I} \mathbf{x} \mathbf{B},\left|\mathbf{F}_{\mathbf{B}}\right|=|\ell \mathbf{I B s i n}(\theta)|, \ell=1$ length of wire. RHR \#l

Magnetic Torque

Magnetic Moment: $\boldsymbol{\mu}\left(T \cdot m^{2}\right)=N I A$, where $N=\#$ of turns, $A=$ area of loop, direction is consistent with Bloop $^{\text {from RHR \#3. }}$
Area vector: A is normal to plane of loop, typically same direction as magnetic moment
Magnetic Torque: $\left|\boldsymbol{\tau}_{\mathrm{B}}\right|=\left|\mathrm{NB}_{\mathrm{ext}} \mathrm{IA} \sin (\theta)\right|, \theta=$ angle between area vector and external magnetic field
$=\mu \times B_{\text {ext }}=\left|\mu B_{\text {ext }} \sin (\theta)\right|$
Direction: tends to align area vector (or $\boldsymbol{\mu}$) with $B_{\text {ext }}$ direction.

Electromagnetic Induction

Magnetic Flux: $\boldsymbol{\Phi}_{\mathrm{B}}=|\mathbf{B}| \cdot|\mathbf{A}| \cdot \cos (\theta)$, where $\theta=$ angle between \mathbf{B} and Area vector (A).
Induced EMF: $\varepsilon_{\text {ind }}=\mathrm{N}(\Delta \boldsymbol{\Phi} / \Delta \mathrm{t})$, opposes $\Delta \boldsymbol{\Phi}$.
Motional EMF: $\varepsilon_{\text {ind }}=\mathrm{BLv}$, opposes $\Delta \Phi$.
Self-induction: $\varepsilon_{\text {ind }}=\mathrm{L}(\Delta I / \Delta t)$, where $L=$ self-inductance (Henrys), Lloop $=N \Phi / I$
Energy Stored by an Inductor: $E=\frac{1}{2} L I^{2}$
Finding direction of induced current:

1) Find initial direction of $\boldsymbol{\Phi}_{\mathrm{B}}$.
2) Find direction of $\Delta \boldsymbol{\Phi}_{\mathrm{B}}$.
3) $B_{\text {ind }}$ opposed $\Delta \boldsymbol{\Phi}_{\mathrm{B}}$.
4) I ind is consistent with $\mathrm{B}_{\text {ind }}$ using RHR \#3

Average voltage drop across inductor: $\Delta V_{L}= \pm L(\Delta I / \Delta t)$ (for instantaneous $\Delta V_{L}-$ see $R L$ circuits)

Light and Optics

Energy Density of Light: $u_{\text {tot }}=u_{\text {electric }}+u_{\text {magnetic }}=\frac{1}{2} \epsilon_{0} E_{r m s}{ }^{2}+\frac{1}{2}\left(1 / \mu_{0}\right) B_{r m s}{ }^{2}$ or $u_{\text {tot }}=\epsilon_{0} E_{r m s}{ }^{2}=\left(1 / \mu_{0}\right) B_{r m s}{ }^{2}$ Intensity of Light: $S=$ Power/Area $=C * u_{\text {total }}$, for light spread out over sphere, $S=P o w e r / 4 \pi r^{2}$

Doppler Effect

General case (both source and observer moving):
Plus sign when source and observer come closer (blueshift)
Minus sign when source and observer move apart (redshift)

$$
f_{o b s}=f_{s r c}\left(1 \pm \frac{v_{r e l}}{v_{\text {wave }}}\right)
$$

Alternate formula for Doppler effect: $\quad \frac{\Delta \lambda}{\lambda}=\frac{v_{\text {relative }}}{c}$

Wave Equation: $v=f \lambda$
Index of refraction: $n=c / v$, where $c=$ speed of light in vacuum, $v=$ speed of light in medium
Wavelength of light: $\lambda_{n}=\lambda_{0} / n$ (wavelength of light shortens when it enters some medium)
Snell's Law: $n_{1} \sin \left(\theta_{1}\right)=n_{2} \sin \left(\theta_{2}\right)$, light turns toward normal when entering higher index Critical Angle: $\theta_{\text {crit }}=\sin ^{-1}\left(n_{1} / n_{2}\right)$, max angle of incidence for light to pass from $n_{2} \rightarrow n_{1}$. Polarization

Brewster's Angle: $\theta_{B}=\tan ^{-1}(n)$. If $\theta_{\text {incidence }}=\theta_{B}$, ray is polarized parallel to surface
Unpolarized light through polarizer: $I_{\text {final }}=\frac{1}{2} I_{\text {initial }}$
Polarized light through polarizer: $I_{\text {final }}=I_{\text {initial }} \cos ^{2}(\theta)$,
where $\theta=$ angle between polarized light and axis of polarizer

Lenses and Mirrors
$\mathrm{p}=$ object distance
$q=$ image distance
$\mathrm{f}=$ focal length
$R=$ radius of curvature $=2 f$
$\mathrm{M}=$ magnification $=-q / \mathrm{p}$
If $M+$, image is upright
If $M-$, image is inverted
Image size: himage $=|M| h_{\text {object }}$
Optics Equation: $\frac{1}{p}+\frac{1}{q}=\frac{1}{f}$

Mirrors

Interference and Diffraction (light waves)

$d=s l i t$ separation, $L=$ distance to screen, $y=$ distance from center of pattern on wall, $\delta=$ path difference between two sources of light, $\theta=$ angular distance from center of pattern.

```
Two-slit interference (m = order number)
    Constructive Interference (bright fringes) where }\delta=\textrm{dsin}0=\textrm{dy}/L=0, \lambda, 2\lambda, 3\lambda, .. (m\lambda
```



```
Single-slit interference
    a = slit width, dark fringes where a sin}0=ay/L = \lambda, 2\lambda, 3\lambda, ...
    Resolution: }\mp@subsup{0}{\operatorname{min}}{\prime= separation/distance = \lambda/D (slit) or 1.22\lambda/D (circular aperture)
Diffraction grating
    d = groove separation, bright light reflected where dsin}0=\lambda,2\lambda,3\lambda, ..
Thin Films
    Phase shift due to reflection: }\delta=\frac{1}{2}\mathrm{ wave if reflecting off higher index, otherwise 0
    Phase shift due to extra distance in film: \delta = 2tn/\lambda | waves where t = film thickness
    Constructive Interference (CI): \delta < - \delta < = 0, 1, 2, ... waves, DI: }\mp@subsup{\delta}{2}{}-\mp@subsup{\delta}{1}{}=0.5, 1.5, 2.5 waves
```


Modern Physics

Photoelectric Effect

Photon Energy: $\mathrm{E}=\mathrm{hf}=\mathrm{hc} / \lambda$, where $\mathrm{h}=$ Planck's constant (see p1)
Work Function: $\Phi=$ minimum $K E$ needed for an electron to escape from a metal surface
Photoelectric Effect: (KE) max $=$ hf - ϕ for max $K E$ of electrons emerging from a surface If $\mathrm{hf}<\Phi$, then no electrons escape $h f=\Phi$ at cutoff frequency: $f_{\text {cutoff }}=\Phi / h$

Momentum of a photon: $p=$ Energy/c $=h / \lambda$

Hydrogen spectrum

Energy levels in Hydrogen: $E_{n}=-13.6 / \mathrm{n}^{2} \mathrm{eV}$, where $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$
Electron absorption/emission : $\frac{1}{\lambda}=R_{H}\left|\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right|$, where $R_{H}=\operatorname{Rydberg}$ constant $\left(1.097 \times 10^{7} \mathrm{~m}^{-1}\right)$
Blackbody Radiation - Wien's Law: $\lambda_{\max } T=0.029 \mathrm{~m} \cdot \mathrm{~K}$

Radioactivity

Half-life: $T_{\frac{1}{2}}=$ Time for half of the remaining radioactive atoms in a sample to decay Decay constant: $\lambda=0.693 / T_{\frac{1}{2}} \mathrm{~s}^{-1}$
Radioactive decay: $\quad N(t)=N_{0} e^{-\lambda t}$
Radioactivity: $\mathrm{a}(\mathrm{t})=\lambda \mathrm{N}(\mathrm{t}), a(t)=a_{0} e^{-\lambda t}$, units: Becquerels or Bq (decays/sec)

Biological Effects of Radiation

```
Radiation Absorbed Dose (Grays): Dose = (Absorbed Energy)/(Mass of absorbing material)
                    1 rad = 0.01 J/kg = 0.01 Grays
Biologically Equivalent Dose (rems) = Absorbed Dose * (Relative Biological Effectiveness)
```


Nuclear Physics

Binding Energy: $B E=\Delta \mathrm{mc}^{2}$, where $\Delta \mathrm{m}=\mathrm{M}_{\text {nucleus }}-\mathrm{N}_{\text {protons }} \mathrm{m}_{\text {proton }}-\mathrm{N}_{\text {neutrons }} \mathrm{m}_{\text {neutron }}$
Mass-Energy calculations: $\mathrm{E}(\mathrm{MeV})=$ Mass (u) * $931.5 \mathrm{MeV} / \mathrm{u} \cdot \mathrm{c}^{2}$

Proton:	1.007276 u					
Neutron:	1.008665 u					
Electron:	0.0005486 u					
Hydrogen	$\left({ }^{1} \mathrm{H}\right): 1.007825 \mathrm{u}$	Deuter	ium ($\left.{ }^{2} \mathrm{H}\right): 2.014102 \mathrm{u}$	Tri	um ($\left.{ }^{3} \mathrm{H}\right)$:	3.016050
Helium	${ }^{3} \mathrm{He}: 3.016030$ u	${ }^{4} \mathrm{He}$:	4.002602 u			
Boron	${ }^{11} \mathrm{~B}$: 11.009305 u					
Carbon	${ }^{12} \mathrm{C}$: 12.000000 u	${ }^{13} \mathrm{C}$:	13.003355 u	${ }^{14} \mathrm{C}$:	14.003241	
Manganese	${ }^{55} \mathrm{Mn}$: 54.938047 u					
Iron	${ }^{56} \mathrm{Fe}$: 55.934939 u					
Cobalt	${ }^{59} \mathrm{Co}$: 58.933198 u	${ }^{60} \mathrm{Co}$:	59.933819 u			
Strontium	${ }^{90} \mathrm{Sr}$: 89.907738 u					
Krypton	${ }^{92} \mathrm{Kr}: 91.926270$ u					
Barium	${ }^{141} \mathrm{Ba}$: 140.914363 u					
Radium	${ }^{226} \mathrm{Ra}$: 226.025402 u					
Uranium	${ }^{235} \mathrm{U}: 235.043924$ u	${ }^{238} \mathrm{U}$:	238.050784 u			
Plutonium	${ }^{242} \mathrm{Pu}: ~ 242.058737 \mathrm{u}$					

