Quiz #7A

Clearly indicate (with a box) your answers to the following questions. SHOW ALL WORK.

- 1. A compact disc with a radius of 3.0 cm is spinning at a rate of 240 rev/min when the power to the player is shut down. Over the course of the next 4.0 seconds, the CD comes to a stop.
- a) Through how many revolutions does the CD turn during this 4.0 second time interval?
- b) What is the magnitude of the tangential acceleration of a point on the rim of the compact disc during this interval?
- c) What is the magnitude of the radial acceleration of a point on the rim of the compact disc at the beginning of this interval?
- d) What is the magnitude of the radial acceleration of a point on the rim of the compact disc at t = 2.0 seconds?

the fill of the compact disc at
$$t = 2.0$$
 seconds?

$$\Delta \theta = 7$$

$$\omega_{0} = 240 \frac{\text{rev}}{\text{min}} = 25.1 \text{ rad/sec}$$

$$\omega = 0$$

$$\alpha = 7$$

$$t = 4.0 \text{ s}$$

$$= \frac{1}{6}.0 \text{ rev}$$

$$\delta) \omega = \omega_{0} + \alpha t$$

$$0 = 25.1 + \alpha (4.0)$$

$$\alpha_{\text{tan}} = r|\alpha| = \frac{1}{6}.275 \frac{\text{rad/s}}{\text{s}^{2}}$$

$$\alpha_{\text{tan}} = r|\alpha| = \frac{1}{6}.19 \frac{\text{m/s}}{\text{s}^{2}}$$

$$\alpha_{\text{tan}} = r|\alpha| = \frac{1}{6}.19 \frac{\text{m/s}}{\text{s}^{2}}$$

$$\alpha_{\text{tan}} = r|\alpha| = \frac{1}{6}.19 \frac{\text{m/s}}{\text{s}^{2}}$$

d) $\omega = 25.1 - (6.275)(2.0) = 12.55$

arad = (.03)(12.55)2= 4,7 m/32

- 2. A pendulum bob of mass 2.5 kg is attached to a 1.2 meter string and held at an angle of 35° with respect to the vertical. The bob is then released from rest.
- a) What is the speed of the bob when it passes through its lowest point?
- b) What is the tension in the string when the bob passes through its lowest point?
- c) What is the tension in the string when the bob reaches its highest point again and comes to rest?

$$h = L - L \cos 35^{\circ}$$

$$= 1.2 (1 - \cos 35^{\circ}) = 0.217 \text{ m}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^$$

$$\begin{array}{c}
\text{EFrad} = \text{M9cos } 35^{\circ} - F_{7} = 0 \\
\text{M9cos } 35^{\circ} \\
\text{M9cos } 35^{\circ}
\end{array}$$

$$\begin{array}{c}
\text{TF}_{7} = 20 \text{ NJ} \\
\text{M9sin } 35^{\circ}
\end{array}$$

3. With what initial speed must a satellite be launched in order to reach a stable circular orbit at an altitude of 1200 km above the Earth's surface?

Also, what will be the period of this satellite, in hours?

$$C = 6.38 \times 10^{6} + 1.2 \times 10^{6}$$

$$= 7.58 \times 10^{6} m$$

$$= [6.67 \times 10^{-1}](5.98 \times 10^{24})$$

$$= [6.67 \times 10^{-1}](5.98 \times 10^{24})$$

$$= 254 \%$$

$$V_{1} = \frac{1}{2}mv^{2} = \frac{1}{2}m(7254)^{2} = 2.63 \times 10^{7} m$$

$$V_{2} = \frac{6Mm}{R_{E}} = \frac{(6.67 \times 10^{-1})(5.98 \times 10^{24})m}{6.38 \times 10^{5}}$$

$$= -6.25 \times 10^{7} m$$

$$V_{3} = \frac{6Mm}{R_{E} + h} = \frac{(6.67 \times 10^{-1})(5.98 \times 10^{24})m}{7.58 \times 10^{6}}$$

$$= -5.26 \times 10^{7} m$$

$$W_{grav} = OK$$

$$-(U_{\xi} - U_{i}) = \frac{1}{2}mv^{2} - \frac{1}{2}mv_{o}^{2}$$

$$5.26 \times 10^{7} h - 6.25 \times 10^{7} p = \frac{1}{2}hv_{o}^{2} + 2.63 \times 10^{7} h$$

$$-9.9 \times 10^{6} - 2.63 \times 10^{7} = \frac{1}{2}v_{o}^{2}$$

$$V_{o} = 8500 \text{ m/s}$$

$$T = \frac{2\pi r}{V} = \frac{2\pi (7.58 \times 10^{6})}{7254} = \frac{6566 \text{ sec}}{-1.8 \text{ hrs}}$$