Physics 10164 - Spring 2020 Exam 1B

1) (35 pts) An experimenter is attempting to hold a 3.15 kg ball in place. The ball has a $-424 \mu \mathrm{C}$ charge on it, and the ball is immersed in an electric field of magnitude $87500 \mathrm{~N} / \mathrm{C}$, pointing in a direction 36.0° above the $-x$ direction. What is the magnitude and direction of the applied force needed to hold the ball in place? Assume gravity, electric and applied forces are all relevant.
2) (30 pts) A ball with a charge of $-27.0 \mu \mathrm{C}$ and mass 375 grams is dropped from rest at a height 33.0 meters above the ground. The ball has a final speed of $40.4 \mathrm{~m} / \mathrm{s}$ the instant before it hits the ground. Assume gravity and the electric force are the only relevant forces.
a) What is the magnitude and direction of the uniform electric field through which the ball moves?
b) If the voltage at ground level is exactly zero Volts, what is the voltage at the ball's initial position?
3) (35 pts) Three charges are arranged in a line as shown below. Assume only the electric force does any work in this problem. Charges q_{2} and q_{4} remain fixed in place throughout this problem. Charge q_{5} has a mass of 35.0 grams and is initially at rest, but it accelerates in response to the electric force acting upon it, moving 23.0 cm in the +x direction to a final location marked by x in the diagram below. What is the speed of charge q_{5} when it reaches that final location?

$$
\begin{aligned}
& \bigcirc \stackrel{23.0 \mathrm{~cm}}{\longrightarrow} \mathrm{O} \stackrel{23.0 \mathrm{~cm}}{\longleftrightarrow} \stackrel{23.0 \mathrm{~cm}}{\longleftrightarrow} \mathrm{x} \\
& \mathrm{q}_{4}=+4.05 \mu \mathrm{C} \quad \mathrm{q}_{2}=-2.92 \mu \mathrm{C} \quad \mathrm{q}_{5}=-5.28 \mu \mathrm{C}
\end{aligned}
$$

