Physics 10164 - Spring 2020 Exam 1D

1) (30 pts) Three charges are fixed in place along the x-axis as shown below.
a) Find the magnitude and direction of the electric field at the location marked x.
b) If a $1.25-\mathrm{kg}$ mass with a charge of $-6.10 \mu \mathrm{C}$ were located at x , what would be the magnitude and direction of its acceleration?

2) (35 pts) A $3.50-\mathrm{kg}$ model rocket's engines provide a constant upward (+y) applied force of 122 N . The rocket is also moving through a uniform electric field of $7850 \mathrm{~N} / \mathrm{C}$ pointing in the -y direction. Assume only gravity, the applied force and the electric force are relevant in this problem. Starting from rest, the rocket moves upwards a total distance of 338 meters in 4.68 seconds, and the rocket has some charge q.
a) Find the value of q for the rocket, and be sure to indicate clearly whether it is positive or negative.
b) How much work is done by the electric force during this motion?
3) (35 pts) Three charges are arranged in a line as shown below. Assume only the electric force does any work in this problem. Charges q_{2} and q_{4} remain fixed in place throughout this problem. Charge q_{5} has a mass of 35.0 grams and is initially at rest, but it accelerates in response to the electric force acting upon it, moving 23.0 cm in the +x direction to a final location marked by x in the diagram below. What is the speed of charge q_{5} when it reaches that final location?

$$
\begin{aligned}
& \bigcirc \stackrel{23.0 \mathrm{~cm}}{\longrightarrow} \mathrm{O} \stackrel{23.0 \mathrm{~cm}}{\longleftrightarrow} \stackrel{23.0 \mathrm{~cm}}{\longleftrightarrow} \mathrm{x} \\
& \mathrm{q}_{4}=+4.05 \mu \mathrm{C} \quad \mathrm{q}_{2}=-2.92 \mu \mathrm{C} \quad \mathrm{q}_{5}=-5.28 \mu \mathrm{C}
\end{aligned}
$$

