Physics 10164 - Spring 2020 Exam 1E

1) (30 pts) An experimenter is attempting to hold a 3.15 kg ball in place. The ball has a $-424 \mu \mathrm{C}$ charge on it, and the ball is immersed in an electric field of magnitude $87500 \mathrm{~N} / \mathrm{C}$, pointing in a direction 36.0° above the $-x$ direction. What is the magnitude and direction of the applied force needed to hold the ball in place? Assume gravity, electric and applied forces are all relevant.
2) (35 pts) A $3.50-\mathrm{kg}$ model rocket's engines provide a constant upward (+y) applied force of 122 N . The rocket is also moving through a uniform electric field of $7850 \mathrm{~N} / \mathrm{C}$ pointing in the -y direction. Assume only gravity, the applied force and the electric force are relevant in this problem. Starting from rest, the rocket moves upwards a total distance of 338 meters in 4.68 seconds, and the rocket has some charge q.
a) Find the value of q for the rocket, and be sure to indicate clearly whether it is positive or negative.
b) How much work is done by the electric force during this motion?
3) (35 pts) Charge $q_{3}(3.00 \mu \mathrm{C})$ is fixed in place at the origin. Nearby, at a coordinate $x=7.50 \mathrm{~cm}$, a charge $q_{4}(-4.80 \mu \mathrm{C})$ with a mass of 382 grams is initially at rest. An unknown applied force also acts in this problem in addition to the electric force while charge q_{4} moves from its initial location at $x=7.50$ cm to its final location at $\mathrm{x}=4.10 \mathrm{~cm}$. When it arrives at its final location, q_{4} has a speed of $1.33 \mathrm{~m} / \mathrm{s}$ in the $-x$ direction.

How much work is done by the applied force during this motion?

