Quiz 24.1B

The Sun radiates power at a rate of 4.00×10^{26} Watts. That energy is spread uniformly over all space, and Earth receives some fraction of that energy.
a) Assuming an Earth-Sun distance of 93.0 million miles, calculate the intensity of light from the Sun at this distance. Answer with 3 SF, and show all work.
b) This initially unpolarized light passes through a vertically-oriented polarizer, then it passes through a second polarizer that makes an angle θ with the polarizer. If the final intensity of the light after passing through the two polarizers is $525 \mathrm{~W} / \mathrm{m}^{2}$, what is the angle $\boldsymbol{\theta}$?
c) This polarized light falls on a 12.5 square meter solar panel that collects energy for an orbiting space station. Assuming the panel is 100% efficient at converting solar energy into usable electric power, how much energy (in kilowatt-hours) is collected in one hour?

