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Antivirals are the first line of defence against influenza, so drug efficacy should be re-evaluated for each
new strain. However, due to the time and expense involved in assessing the efficacy of drug treatments
both in vitro and in vivo, treatment regimens are largely not re-evaluated even when strains are found to
be resistant to antivirals. Mathematical models of the infection process can help in this assessment, but for
accurate model predictions, we need to measure model parameters characterizing the efficacy of antivirals.
We use computer simulations to explore whether in vitro experiments can be used to extract drug efficacy
parameters for use in viral kinetics models. We find that the efficacy of neuraminidase inhibitors can be
determined by measuring viral load during a single cycle assay, while the efficacy of adamantanes can be
determined by measuring infected cells during the preparation stage for the single cycle assay.
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AMS Subject Classification: 92C08; 92C50

1. Introduction

Influenza is an infectious disease that can cause serious illness and death. Influenza mutates
rapidly [16] and has the ability to recombine to form new strains [29]. The genetic drift caused
by single amino acid mutations can lead to mismatch between the vaccine strains and circulating
strains of seasonal influenza [4,11,17]. Particularly concerning are the mutations that confer drug
resistance [1,7,10,20,26,28], as they will require a change in treatment strategy. In addition to
genetic drift, influenza can experience large genetic changes through reassortment [50,61], such
as those that led to the 2009 H1N1 pandemic [56]. Given the mismatch between vaccine and
circulating strains and the several month-long production time of vaccines, drugs are usually the
first line of defense against influenza.

There are two main types of drugs used to fight influenza infections: neuraminidase inhibitors
(NAIs) and adamantanes. NAIs prevent neuraminidase from cleaving the virions from the cell,
reducing the rate at which virus is released from an infected cell [2,20]. NAIs also increase
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virion mobility by preventing the virions from sticking to each other and surrounding mucus
[14,45]. Adamantanes reduce the infection rate by blocking uncoating of the influenza virus
once it enters the cell, preventing it from ejecting its genetic code into the cell to be transcribed
into new virions [1]. Prophylactic treatment with both classes of drugs has been shown in studies
to be effective in preventing influenza infections, with NAIs ranging from 58% to 84% efficacy
[40] and adamantanes having a 61% efficacy [39].

Efficacy of the drugs, however, is known to be dependent on viral strain [19,47]. In vitro assays
are often used to assess the efficacy of antivirals against circulating strains [37]. Measurements
of how viral load [52] or cytopathic effect [47] change with increasing dose of antiviral are used
to help determine whether a particular strain is drug resistant. Unfortunately, researchers are not
consistent in the type of in vitro assay used or even in the experimental measurement that is
used to characterize drug efficacy. This makes it difficult to interpret and compare results from
different studies and to extrapolate what these results would mean for patient treatment options.

Mathematical modelling can play an important role in this process by allowing investigators
to judge the effect of novel regimens, such as combination therapy, before clinical implementa-
tion. Mathematical models of influenza viral kinetics have already been used in this way to show
that delayed treatment with oseltamivir could be effective in treating long-lasting influenza [15],
but is likely to have limited efficacy for seasonal influenza [12,15]. Another modelling study
examined the effect of several hypothetical antivirals, each targeting a different part of the repli-
cation cycle, to determine which would be most effective at reducing viral titers [31]. While the
use of mathematical models to design influenza drug treatment is still quite new, drug regimen
optimization using mathematical models is more common for other infectious diseases [9,48]
including HIV [3,23,42,63], hepatitis B [54], and hepatitis C [22].

In order for mathematical models to accurately predict treatment outcomes, drug efficacy
parameters must be properly measured. The two key measures of the efficacy of a drug are
the 50% inhibitory concentration (IC50) and the maximum antiviral efficacy (εmax). The IC50

is the concentration at which the antiviral inhibits an infection parameter (e.g. viral production
rate or virion infectivity) to 50% of its value in an untreated infection. εmax, a number between
0 and 1, describes the maximum inhibition possible when the antiviral is applied at saturation
concentrations. It is important to note, however, that the values of these parameters will depend
on the quantity being measured [55]. For example, while it is quite clear that NAIs are highly
effective (near 100%) at inhibiting the activity of neuraminidase [41,57,62], this does not nec-
essarily translate to the same high efficacy at preventing infections. When given in vivo, several
factors diminish the effectiveness of NAIs, including bioavailability [13,30] and alternative viral
release pathways [21,36,43]. This affects not just the measured εmax, but also the measured IC50;
hence, the distinction usually made between a 50% inhibitory concentration and a 50% effective
concentration (EC50) which measures a drug’s effect on a more large-scale process [18].

For viral kinetics models, these different values for εmax and IC50 pose a problem. Most viral
kinetics models do not explicitly model the action of neuraminidase or the uncoating of virions,
but rather include these biochemical processes as part of larger processes. Since the biochemical
processes are not explicitly included in the model, the effect of a drug is applied to the larger
process. For example, NAIs are often modelled as reducing the production rate [5,15,25], a pro-
cess that includes production, assembly and release of virions, even though NAIs only block
release of the virus. Likewise, although adamantanes block viral uncoating, their effect is mod-
elled as reducing the infection rate [8] which also includes processes such as viral attachment
and viral entry into the cell. This means that we cannot assume that the IC50 and εmax measured
in inhibition assays are the correct parameters for use in a viral kinetics model since inhibition
assays only measure the biochemical effect of the drug. Similarly, we cannot assume that EC50

and εmax measured from in vitro or in vivo infections will provide the correct values for use in
a viral kinetics model since these characterize the effect of the drug on quantities derived from
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334 N.F. Beggs and H.M. Dobrovolny

multiple cycles of infection. In order to effectively use viral kinetics models, however, we need
to determine the correct values of IC50 and εmax for use in the model.

This paper uses computer simulations to examine whether there are any experimental measure-
ments that can determine the proper IC50 and εmax values for modelling NAIs and adamantanes
in a viral kinetics model. We find that the IC50 and εmax for modelling NAIs can be extracted from
a single cycle assay while the IC50 and εmax for adamantanes can be extracted from an assay that
isolates the infection process.

2. Methods

2.1. Mathematical model

We use an extension of the mathematical model presented in Baccam et al. [5] to simulate the
influenza life cycle,

dT

dt
= −βTV ,

dE1

dt
= (1 − m)βTV − nE

τE
E1,

dEj

dt
= nE

τE
Ej−1 − nE

τE
Ej for j = (2, . . . , nE),

dI1

dt
= nE

τE
EnE − nI

τI
I1,

dIj

dt
= nI

τI
Ij−1 − nI

τI
Ij for j = (2, . . . , nI),

dV

dt
= (1 − n)p

nI∑
j=1

Ij − cV .

(1)

In the model, target cells, T, become infected at rate β when they encounter virus. Upon
infection, the cells enter an eclipse state, E, where they are infected, but not yet producing virus.
After an average time, τE, the cells transition to a productively infectious state, I, where they are
producing virus at rate p. After an average time, τI , the infectious cells die. Virus loses infectivity
at a rate c. A schematic of the model is shown in Figure 1. Parameters were taken from previously
published fits to experimental data from the pandemic H1N1 virus [49]. Parameters are listed in
Table 1.

Since adamantanes prevent uncoating of the virion, the effect of adamantanes is modelled as
reducing the infection rate β with efficacy m in the equation for E only. Beauchemin et al. [8]
showed that this formulation more accurately reproduced the effect of amantadine than applying
the drug effect to β in both the T and E equations. In the above formulation, target cells are
removed from the population when an infectious virus enters the cell. This prevents possible
multiple infections of a single cell in the presence of amantadine. The effect of NAIs is modelled
as reducing the production rate p with efficacy n. In this formulation, we are assuming that NAIs
prevent formation of virions rather than just block release of fully formed virions.

Our model assumes a gamma distribution, represented by the multiple compartments for E
and I, for the transition times between the eclipse state and the infectious state, as well as for
the transition times between the infectious and dead cells. The number of compartments in the
eclipse state is given by nE, while the number of compartments in the infectious state is given
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Figure 1. Influenza infection model. The virus, V, attacks target cells, T, at rate β. Once infected, target cells enter
the eclipse phase, E. The eclipse phase lasts an average time of τE , after which the cells become infectious cells, I.
The infectious cells produce new virions at rate p, and the virus decays at rate c. The cells remain infectious for an
average time of τI , after which they become dead cells. Adamantanes reduce β with efficacy m, and NAIs reduce p with
efficacy n.

Table 1. Parameter values for model (1).

Parameter Value

β 426 (h · pfu/mL)−1

p 176 pfu/mL · h−1

τE 6.6 h
τI 49 h
c 0.13 h−1

nE 30
nI 100
ε∗

max 0–1
IC∗

50 varies

Note: Values are taken from [49].
∗ When εmax and IC50 are not varied, they are fixed at 1.

by nI . The gamma distribution avoids the very short or very long transition times allowed by
an exponential model. Previous work has shown that the exponential model does not properly
model a single cycle assay [34], which is one of the assays we simulate.

2.2. Implementing the effect of drugs

In the model, we use the efficacy of a drug to reduce either the infection rate or the production
rate. In experiments, however, researchers apply a particular dose, D, of a drug. We can relate
the dose of a drug to its efficacy through the Emax model [35],

ε = εmax
Dγ

ICγ

50 + Dγ
, (2)

where εmax is the maximum effect of the drug, IC50 is the drug concentration at which the drug
achieves 50% of its maximum effect, and γ controls the steepness of the sigmoidal function.
Biologically, γ is determined by the number of binding reactions needed for the drug to func-
tion [60]. Many drugs require only one binding reaction, so a large number of dose–response
curves are adequately fit with γ = 1. We have assumed that this is the case for both NAIs and
adamantanes.
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336 N.F. Beggs and H.M. Dobrovolny

2.3. Simulating experimental assays

Simulation of experimental assays is implemented in the model by changing the initial conditions
to reflect the initial conditions for in vitro assays. We initially explore two common in vitro
assays: the multiple cycle assay and the single cycle assay.

Perhaps the most common in vitro assay is the multiple cycle assay, pictured in Figure 2 (top).
Experimentally, initial conditions are presented in terms of the multiplicity of infection (MOI).
The MOI is the ratio of virus to target cells. In the multiple cycle experiment, virus at a low
MOI is allowed to incubate on a cell culture for 1 h. After the incubation period, the seed virus is
washed off. Since the MOI is low, only a small fraction of cells is infected during the incubation
period. We can assume that the initially infected cells will be in the eclipse phase as the eclipse
phase duration lasts, on average, 6 h [5], so the infected cells will not yet have had time to become
productively infectious. These cells initiate an infection which is monitored by measuring the
amount of virus in the supernatant or the fraction of dead cells at various times. We simulate this
type of assay by adjusting the initial conditions for our model. We assume that there are 106 cells
in the in vitro preparation. We start the simulation after the seed virus has been washed off, so we
assume that V0 = 0. The number of cells initially in the first eclipse compartment is assumed to
be 50, as in Pinilla et al. [49]. There are initially no cells in the remaining eclipse compartments
or in any infectious compartments.

Another type of in vitro assay is the single cycle assay, pictured in Figure 2 (bottom). In this
experiment, a high MOI ( > 1) is allowed to incubate on a cell culture for 1 h. After the incubation
period, the seed virus is washed off. Since the MOI for this experiment is high, we assume that
all cells in the well have been infected during the incubation period. We again assume that all
infected cells are in the eclipse state since the 1 h incubation period is shorter than the assumed
mean 6 h duration of the eclipse phase. We simulate this assay by assuming that all the seed virus
has been washed off (V0 = 0) and that all the cells in the well have been infected. We again
assume that the infected cells are in the first eclipse compartment and that the remaining eclipse
compartments and infectious compartments initially are zero. Since all cells are infected, the
initial number of target cells is zero.

2.4. Assessing drug efficacy

The goal of our research is to determine whether any experimentally measurable quantities
actually correspond to the underlying IC50 and εmax. We investigate this possibility through a
simulation study exploring the manifestation of drugs on several quantities that can be measured
from in vitro assays. When studying infection dynamics, researchers most often measure viral

Figure 2. Experimental in vitro assays. (top) The multiple cycle assay is initiated with a small amount of virus. After
the 1 h incubation period, the initial viral inoculum is washed off, leaving a small number of infected cells. (bottom) The
single cycle assay is initiated with a large amount of virus. After the 1 h incubation period, the initial viral inoculum is
washed off, leaving all the cells in the well infected.
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load as a function of time [52], but the cytopathic effect (number of dead cells) is also a common
measurement, particularly when assessing the effect of an antiviral [46]. We predict the effect of
the drug on several characteristics of the viral titer and dead cell time courses. We first assess
the effect of the drug on viral titer measured at a particular time; perhaps the most common
experimental method for assessing the efficacy of a drug. Several different measurement times
are investigated. We also study the effect of the drug on peak viral titer, time of viral peak, viral
upslope, viral downslope and area under the curve (AUC). AUC is the area under the viral titer
curve and is often used to assess the severity of an infection [6,27]. Viral upslope is the expo-
nential growth rate of the viral titer during the first ∼ 1 d of infection. The viral downslope is the
exponential decay rate of the viral titer. While these quantities are not typically measured exper-
imentally, they can be determined from experimental data and it is worth investigating whether
they can be used to extract model parameters. Additionally, we examine the number of dead cells
at a specific time; again a common method of assessing the efficacy of a drug. For the dead cells,
we also investigate the time at which half the maximum number of dead cells have died. This is
again a quantity that is not typically measured, but one that can be extracted from experimental
data and might be useful for determining model parameters.

To determine whether any of these predicted outcomes can extract model drug efficacy
parameters, we use the following procedure:

(1) We simulate both the multiple cycle and single cycle assays for a variety of εmax and IC50

values. When εmax is varied, IC50 is held fixed at 1 and when IC50 is varied, εmax is held fixed
at 1.

(2) We generate dose–response curves for each of the quantities discussed above (i.e viral
upslope, AUC, etc.) for all εmax and IC50 values.

(3) From the dose–response curves, we extract the effective εmax, which we denote εout, or the
effective IC50, which we denote IC50,out.

(4) We plot the effective εout or IC50,out as a function of the assumed εmax or IC50.

For example, Figure 3 shows dose–response curves generated by measuring the viral titer in
a multiple cycle assay at 48 h. To generate the curves, we assumed an IC50 of 1 and εmax values
of 0.2, 0.4, 0.6, and 0.8. The effective εout and IC50,out for these measurements are the maximum

Figure 3. Dose response curves. We simulated a multiple cycle assay and measured the viral load at 48 h as a func-
tion of drug concentration. We assumed values of IC50 = 1 and εmax = 0.2,0.4,0.6,0.8 to generate the curves, but the
dose–response curves produce different effective values of εout and IC50,out.
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effect and 50% effective dose as read off the dose–response curves. Note that in this case, the
εout read off the dose–response curves does not match the εmax value we used to simulate the
experiment. Similarly, the IC50,out measured from the different curves changes even though the
underlying IC50 used for simulations is the same for all curves. If the experimentally measurable
quantity reflects the underlying εmax values, then a plot of εmax (input value) versus εout (output
value) or IC50 (input value) versus IC50,out (output value) will yield a straight line with a slope
of 1.

3. Results

3.1. Neuramindase inhibitors

We simulate the multiple cycle assay and determine εout for several values of εmax and IC50,out

for several values of IC50 for the experimental measures described in Section 2.4. When varying
εmax, we keep IC50 fixed to 1, and when varying IC50, we keep εmax fixed to 1. Figure 4 shows
εout (top row) and IC50,out (bottom row) as functions of εmax and IC50, respectively. We see that
none of the extracted drug parameters return the original values of εmax or IC50. In fact, most
of the input/output relationships are nonlinear. The two exceptions are the peak viral titer and
AUC (red and cyan lines in the rightmost graphs) which show a linear relationship, but it does
not have a slope of one. This could potentially be used to determine the underlying εmax and IC50

if we can ascertain the value of the slope and determine whether it is independent of the type of
drug or other factors. It is, however, preferable to find experimentally measurable quantities that
can extract the original quantities directly, without having to worry about measuring additional
parameters.

It is interesting to note that the values of εout and IC50,out predicted by viral titer at a partic-
ular time or by dead cells at a particular time depend on the chosen measurement time. Since
experimentalists often use single time point measurements to assess the efficacy of a drug and to
extract EC50, the values of EC50 extracted in this way will not be consistent if the time chosen
for measurement differs from experiment to experiment. This is particularly problematic since

Figure 4. Multiple cycle measurements for NAIs. (top) εout as a function of εmax for virus measured at various times
(left), number of dead cells at various times (centre), and other measurable quantities (right). (bottom) IC50,out as a
function of the assumed value of IC50 for virus measured at various times (left), number of dead cells at various times
(centre), and other measurable quantities (right). None of the measurements produce a line of slope equal to 1 relating
the assumed and predicted values.
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Figure 5. Single cycle measurements for NAIs. We show εout as a function of εmax for virus measured at various times
(left) and other measurable quantities (centre). The rightmost graph shows these same quantities for IC50. Several of the
measurements correctly extract the assumed value of εmax as seen by the lines of slope equal to 1.

EC50 is the quantity that is typically used to determine whether a particular viral strain is drug
resistant [2,10].

Since our simulations of the multiple cycle assay did not yield any quantities that could deter-
mine the correct value of εmax, we examined the single cycle assay. Figure 5 shows the predicted
values of εout (left, centre) and IC50,out (right). We do not show the dead cell measurements here
because the time course of dead cells is unaffected by the application of NAIs in the single cycle
assay. Since all of the cells are infected at the same time and NAIs only alter the production rate
of virus, the time course of the cells’ infected lifespans will not change with application of the
drug. This simulation does result in predictions of measurements that can be used to determine
εmax and IC50. In the single cycle assay, the virus measured at any time as well as the peak viral
titer will both return the drug efficacy parameters needed for simulation of NAI treatment.

It might seem surprising that we can extract the correct εmax and IC50 by measuring virus at any
time. To investigate why the result is time-independent, we derived an expression for the virus
as a function of time for the single cycle assay (Appendix 1). We find that the virus is linearly
proportional to the production rate (Equation (A6)), and consequently it is also proportional to
the drug effect. The only assumption used in deriving this result is that the viral loss of infectivity
is negligible, so as long as viral titer measurements are made before the viral titer peak, we can
extract the IC50 and εmax needed for the mathematical model.

3.2. Adamantanes

While the single cycle assay provides a method for determining the drug efficacy parameters of
NAIs, it does not work for adamantanes. This is because adamantanes affect the infection rate of
the influenza virus, but in a single cycle experiment, all cells are already infected when the drug
is added. This can also be shown analytically (Appendix 1) since the expression for virus in a
single cycle assay (Equation (A6)) is independent of the infection rate β, and so is independent
of the effect of adamantanes.

Adamantanes do, however, have an effect on the multiple cycle assay. Figure 6 shows εout

as a function of εmax (top row) and IC50,out as a function of IC50 for experimentally measur-
able quantities of the multiple cycle assay. The multiple cycle assay again does not provide any
measurements that can be used to extract εmax or IC50.

Since none of the measurements from the multiple cycle assay can be used to determine the
drug efficacy parameters for adamantanes and the single cycle assay also cannot be used, new
assays or measurements need to be developed. The single cycle assay can be used to determine
the effect of NAIs because it removes the infection process from the experiment, resulting in
direct measurements of the production portion of the viral life cycle. For adamantanes, we need
an assay that removes the production process, so that we can focus on the infection portion of the
viral life cycle. Since the single cycle assay isolates the production process, it stands to reason
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340 N.F. Beggs and H.M. Dobrovolny

Figure 6. Multiple cycle measurements for adamantanes. (top) εout as a function of εmax for virus measured at various
times (left), number of dead cells at various times (centre), and other measurable quantities (right). (bottom) IC50,out as
a function of the assumed value of IC50 for virus measured at various times (left), number of dead cells at various times
(centre), and other measurable quantities (right). None of the measurements produce a line of slope equal to 1 relating
the assumed and predicted values.

that the incubation period for the single cycle assay isolates the infection process, so we propose
the following ‘incubation assay’. Experimental implementation of the incubation assay involves
study of the incubation period of the single cycle assay. Remember that in the incubation part

Figure 7. Incubation assay measurements for adamantanes. (top) εout as a function of εmax for eclipse cells measured
at various times (left) and infectious cells measured at various times (right). (bottom) IC50,out as a function of IC50 for
eclipse cells measured at various times (left) and infectious cells measured at various times (right). All the measurements
result in the correct extraction of the assumed values of εmax and IC50.
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of the experiment, virus at a high MOI is allowed to infect cells in the well. In the proposed
incubation assay, virus at a high MOI is placed in a well of susceptible cells. Unlike the single
cycle and multiple cycle assays, however, the initial viral inoculum is not removed after 1 h, but
is allowed to remain in the well for the duration of the experiment. Rather than measure virus or
the number of dead cells, it makes sense to study the number of infected cells since we do not
want to include any of the production process in our measurements.

We simulate the incubation period by assuming the initial amount of virus is high (MOI of
4) [49] and that no cells are initially infected (T0 = N , E0 = 0, I0 = 0). We study the cells in
the eclipse state or cells in the infectious state at several time points. We also examine the peak
number of eclipse cells and the peak number of infectious cells. While experimentalists do not
often measure infected cells, such measurements are feasible with today’s technology [44,51,59].

Figure 7 shows the εout (top row) and IC50,out (bottom row) determined from measurements
of the number of eclipse cells (left) or the number of infectious cells (right). As we saw for the
virus in single cycle assays and NAIs, determining the correct εmax and IC50 using eclipse or
infectious cells is independent of the measurement time, making it easy for experimentalists to
make this measurement. The key to determining drug efficacy parameters is to find an experi-
mentally measurable quantity that is linearly proportional to the drug efficacy. For the incubation
assay proposed here, we can show that both the eclipse cells and the infectious cells are linearly
proportional to the applied drug effect for adamantanes (Appendix 2).

4. Discussion

Our work predicts that in vitro assays can be used to extract the values of εmax and IC50 needed to
simulate influenza treatment with either NAIs or adamantanes. In addition to simulation results,
we derived analytical results showing that εmax and IC50 can be determined from experimental
in vitro assays. Unlike the work of Heldt et al. [31], who examined the effect of drugs that have
not yet been developed, our study characterizes the effect of antivirals that are currently in use.
Our results show how to correctly parameterize antiviral drug effects for a particular strain of
influenza, so that the effect of NAIs and adamantanes can be accurately modelled.

We find that the most common experimental assay, the multiple cycle assay, cannot be used
to extract parameters for either NAIs or adamantanes. It is likely that the multiple cycle assay
fails to provide a direct reflection of the drug effect of either adamantanes or NAIs since both
infection and production processes are part of the multiple cycle assay making it difficult to
isolate the effect of a drug acting at only one of those parts of the replication cycle.

The experiment that allows us to determine the εmax and IC50 for NAIs is the single cycle assay,
an in vitro assay that is already widely used to assess viral replication [24,49,58]. Measuring
peak virus will return the correct εmax and IC50, but this is a property that is difficult to measure
accurately with current in vitro assays. Fortunately, virus measured at any time, at least before
viral clearance becomes significant, will also return the correct εmax and IC50. This measurement
does not involve any new techniques or experimental methods [32,33] and so should be easy
for experimentalists to measure. The data can be collected as part of standard experiments that
determine the efficacy of NAIs against new strains of influenza. This is particularly important for
NAIs since oseltamivir, an NAI, is the drug most often stockpiled in preparation for a pandemic
[53]. Rapid determination of drug efficacy parameters during a pandemic will allow us to identify
drug-resistant strains. We can then use the parameters in a viral kinetics model to help assess
whether the NAI will be an effective treatment, helping to guide public health authorities in their
decisions on how to distribute drugs within the stockpile.

Determining εmax and IC50 for adamantanes is more complex, but still feasible with modern
methods. Our proposed new assay is part of the preparation for a single cycle assay; we simply
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propose measuring during the incubation period. While the required preparation is already com-
monly used, the measurement needed from this assay is not as common. Most investigations of
influenza infections measure virus or sometimes the number of dead cells [55]; it is not very
common to measure the number of cells in the eclipse or infectious state. In fact, there are
currently no experimental techniques that differentiate between cells in the eclipse phase and
cells in the infectious phase, but there are methods that can detect infected cells [44,51,59]. One
method uses green fluorescent protein labelling to track viral RNA [44]. The fluorescent label
allows researchers to track a virus particle as it travels from the intracellular medium to the cell.
Another method uses monoclonal antibodies and immunostaining to co-locate viral proteins and
cells [51,59]. Either method could be used to measure the number of infected cells at particular
times during the incubation period. While adamantanes are not often used as a primary line of
defence, they could play an important role in pandemic planning as part of combination therapy
aimed at preventing both spread of the disease and emergence of drug resistance [38]. Mathemat-
ical modelling of combination therapy will be particularly helpful for quickly identifying doses
of the two drugs that will be most beneficial to patients, making treatment of patients safer and
more effective.

It is important to note that the drug efficacy parameters extracted from our proposed in vitro
assays are limited to use within viral kinetics models. More detailed models that include some
of the biochemical processes [31] will implement the effect of antivirals differently and will
likely require assays that isolate specific biochemical processes to extract the correct drug effi-
cacy parameters. Nonetheless, since viral kinetics models are still often used to investigate drug
treatment strategies, our results will allow modellers to extract the parameters needed for these
models. Our investigation of how to extract efficacy parameters for viral kinetics models should,
however, provide a guide to approaching the problem of parameter estimation in more detailed
models.
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Appendix 1. Virus in the single cycle assay

In the single cycle assay, all cells are in the first compartment of the eclipse phase and there are no target cells. Thus, the
equation for this phase reduces to

dE1

dt
= − nE

τE
E1, (A1)

which is a simple exponential and has a solution of

E1 = N exp

(
−nEt

τE

)
, (A2)

where N is the number of cells in the well. We can then find the number of cells in any of the eclipse phase compartments
by solving the series of differential equations. We find the general solution

En = 1

(n − 1)!

(
nE

τE

)n−1

Ntn−1 exp

(
−nEt

τE

)
. (A3)

We can then substitute this expression into the differential equation for the first compartment of the infectious phase,

dI1

dt
= 1

(nE − 1)!

(
nE

τE

)nE

NtnE−1 exp

(
−nEt

τE

)
− nI

τI
I1. (A4)

While somewhat more complicated than the differential for any of the eclipse compartments, it basically has the same
form. Since the number of eclipse cells in the nth compartment is a series of exponentials and the transition from one
infectious compartment to another is exponential, the number of cells in any infectious compartment will also be a series
of exponentials. It is important to note that the number of infected cells in any of the eclipse or infectious compartments
is independent of the amount of virus and independent of the infection rate.

In the early times of the single cycle assay, before the viral peak, we can assume that viral clearance is negligible, so
the differential equation for virus becomes

dV

dt
= (1 − n)p

nI∑
j=1

Ij. (A5)

Since the number of cells in any infectious compartment depends on time only, we can simply integrate this equation to
get an expression for the virus as a function of time,

V = (1 − n)p
∫ s=t

s=0

nI∑
j=1

Ij(s). (A6)

The amount of virus is independent of the infection rate β, which explains why adamantanes do not show any effect in
the single cycle assay. Virus is also linearly proportional to the NAI drug efficacy, so we can directly measure any NAI
drug effect by measuring virus at any time before the peak.

Appendix 2. Cells in the incubation assay

In the incubation assay, the initial amount of virus is large and we assume that it remains approximately constant over
the course of the experiment. Under this assumption, the equation for target cells becomes,

dT

dt
= −βTV0, (A7)

which can be integrated to get an expression for the target cells,

T = T0 exp(−βV0t). (A8)
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We then substitute this expression into the equation for the first compartment of the eclipse phase,

dE1

dt
= (1 − m)βT0V0 exp(−βV0t) − nE

τE
E1, (A9)

which has the solution

E1 = (1 − m)βV0T0

(nE/τE − βV0)

(
exp(−βV0t) − exp

(
−nEt

τE

))
. (A10)

We can again find expressions for the number of cells in any eclipse compartment by recursively substituting into the
differential equations. The general solution for the eclipse compartments is

En = (1 − m)βV0T0

(nE/τE − βV0)n(n − 1)!

[
�

(
n,

(
nE

τE
− βV0

)
t

)
− 1

]
exp(−βV0t), (A11)

where � is the incomplete gamma function. We see that the number of cells in any eclipse compartment is linearly
proportional to the adamantane drug effect. Note that the total number of eclipse cells will also be linearly proportional
to the adamantane drug effect since we are simply summing over all eclipse compartments. We can find the number of
infectious cells by continued integration of the differential equations, resulting in another series of exponentials, but the
drug effect term will remain a multiplicative factor and will not be incorporated into any of the exponential functions.
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