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Linear and nonlinear measures predict swimming in the leech
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Stimulation of a trigger interneuron of an isolated nerve cord preparation of the medicinal leech,Hirudo
medicinalis, sometimes leads to swimming; sometimes it does not. We investigate signals transmitted in the
ventral cord of the leech after stimulation and seek quantitative measures that would make it possible to
distinguish signals that predict swimming from those that do not. We find that a number of linear as well as
nonlinear measures provide statistically significant distinctions between the two kinds of signals. The linear
measures are the time dependence of~i! the standard deviation and~ii ! the autocorrelation function at a small
time delay. The nonlinear measures are~i! a measure of nonlinear predictability and~ii ! the time dependence
of a measure of the size of the embedded signal trajectory. Calculations using surrogate data suggest that the
differences between the two classes of signals are dynamical as well as statistical.

PACS number~s!: 05.45.2a, 87.10.1e, 87.19.Nn
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I. INTRODUCTION

In the medicinal leech,Hirudo medicinalis, the initiation
of swimming following body wall stimulation can be trace
neuron to neuron, from the mechanosensory neurons
perceive the stimulus to motor neurons that produce
swimming movements@1–3#. In this swim-initiating path-
way, neuronal information flows sequentially from mech
nosensory neurons to trigger interneurons~cells Tr1!, to seg-
mental swim-gating interneurons, to oscillator interneuro
The output connections of the swim oscillator network dr
motor neurons in each segmental ganglion that produce
undulatory body wall movements of swimming@1–3#. How-
ever, the synaptic interactions described in the sw
initiating pathway do not adequately explain the behavio
variability observed in the isolated leech nervous system
lowing activation of this pathway. For example, stimulati
of cell Tr1 can elicit swimming in one trial, but may not i
the next trial, even though the strength of cell Tr1 stimu
tion is constant in both trials@3#. Similar behavioral variabil-
ity also occurs in intact leeches in response to body w
stimulation@4#.

Recent attempts to understand why stimulation of cell T
does not reliably trigger swimming has led to the hypothe
that the control of swimming involves two parallel system
originating in the head ganglion that have opposite effects
the segmental swim-generating network, a swim-activat
system that excites the segmental swim-generating netw
and a swim-inactivating system that inhibits or suppresse
@5#. In order for a given stimulus to initiate swimming, th
swim-activating system must be turned on and the inacti
ing system turned off. Attempts to identify neurons in t
head ganglion that comprise the swim-activating a
-inactivating systems and are directly involved with det
mining whether a leech swims in response to a given stim
lus have been largely unsuccessful@6#. The inability to
physiologically identify individual neurons that strongly a
PRE 621063-651X/2000/62~4!/4826~9!/$15.00
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fect the probability of eliciting swimming is consistent wit
the control of swimming being a function of the coordinat
activity of large populations of neurons in the leech nervo
system. Individual neurons may only make a small contrib
tion to the net output of the system, and could easily
missed during physiological searches. Support for a dist
uted process controlling swimming is clearly revealed in e
tracellular records of neuronal spiking activity descend
from the head ganglion in the lateral connectives prior
swimming. These recordings show a complex pattern
spiking activity that is coincident with the onset of swim
ming @5#. Collectively, these observations suggest that
single neuron or even a small group of neurons determ
absolutely whether swimming will occur in response to
given input. Under these circumstances, a computatio
analysis of neuronal activity is most likely necessary to d
cipher how the leech nervous system encodes the initia
of swimming

One of the simplest things expected of the computatio
analysis of biological data is to provide some quantitat
measures that would make it possible to distinguish dist
states of the system that produced the data. These s
could be associated with different behaviors either as pre
sors or correlates of these behaviors. It is, however, not q
so easy to live up to these expectations. In recent years
instance, various linear and nonlinear measures have b
used to study human electroencephalograms~EEGs!. Some
of these studies have been attempts to forecast epileptic
zures~@7# and references therein,@8,9#!. Although these have
shown varying levels of promise there is, as yet, no relia
predictor of the onset of epilepsy@11,12#.

Here, we explore the use of some linear and nonlin
techniques in the analysis of data from a simpler behavio
a much simpler system. We simply ask whether we can fi
quantitative measures that would make it possible to dis
guish signals propagating in the leech ventral nerve cord
lead to swimming from those that do not. Specifically, w
analyze two sets of time series measured from signals pr
gating along the ventral nerve cord following Tr1 stimul
4826 ©2000 The American Physical Society
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PRE 62 4827LINEAR AND NONLINEAR MEASURES PREDICT . . .
tion. One signal propagates toward the rear while the o
signal propagates toward the head~ACN and PCN, respec
tively, in Fig. 1!. These signals are clearly nonstationary~see
Fig. 2!, so rather than using a single set of measures to
scribe an entire time series, or treating the signal’s trajec
in a reconstructed state or phase space as an attracto
partition it into successive nonoverlapping epochs and t
use the time evolution of the properties of the epochs
characterize the time series.

We find that analysis of the ventral chord signals provid
statistically significant discriminations between signals t
lead to swimming and those that do not, and that these
achieved using both linear and nonlinear measures. The
ear measures are the time dependence of the standard d
tion and that of the autocorrelation function at some sm
time delay. The nonlinear measures are two that are r
tively robust against noise and the limitations imposed
small data sets:~1! nonlinear predictablity@10,11#, and ~2!
the time dependence of the mean distance between poin
multidimensional time-delay embeddings of the data. In
dition, we compare the patterns of spiking activity for swim
ming elicited by intracellular stimulation of cell Tr1 an
swimming episodes that occur spontaneously.

II. NEURAL CORRELATES OF SWIMMING

1. Leech nervous system

The leech central nervous system consists of head and
ganglia connected by the ventral nerve cord, a chain of
segmental ganglia and their intersegmental connectives.
segmental ganglia are numbered sequentially, from 1–
beginning with the ganglion posterior to the head gangl
~Fig. 1!. Each segmental ganglion is joined by connectiv
composed of two large lateral bundles of nerve fibers~2800
axons each! and a thin bundle called Faivre’s nerve~97 ax-
ons! @13#!. A pair of nerve roots arises from each segmen
ganglion to innervate the body wall surrounding that s
ment. In isolated nerve cords, swimming activity is indicat
by rhythmic bursts of action potentials in the dorsal poste
~DP! nerve, a branch of a segmental peripheral nerve@12#.

2. Experimental setup

In an isolated leech nerve cord extending from the h
ganglion to the tail ganglion, we recorded extracellula

FIG. 1. Diagram of the experimental preparation. Prepara
consists of the isolated leech ventral nerve cord extending from
head ganglion~HG! to the tail ganglion~TG!. Extracellular record-
ing of multiunit spiking activity in the lateral connectives we
made at two locations: ACN, posterior to the segmental ganglio
PCN, anterior to segmental ganglion 17. Extracellular record
from a peripheral nerve~dorsal posterior, DP! was used to monitor
the occurrence of swimming in the isolated nerve cord. Swimm
was initiated by intracellular stimulation of cel Tr1.
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FIG. 2. Neuronal activity patterns in the lateral connectives
sociated with swimming and nonswimming trials.~a! and ~c! In
both triggered and spontaneous swim episodes, neuronal activi
ACN increases and decreases in PCN approximately 3 s before
initiation of swimming. ~b! In nonswimming trials, no consisten
change was evident in the activcity pattern in ACN or PCN.
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FIG. 3. Time dependence of the mean, sta
dard deviation, skewness, and kurtosis of po
stimulus ACN signals for~a! a nonswimming and
~b! a triggered swimming case.
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neural signals propagating in a lateral connective prior to
following stimulation of cell Tr1~Fig. 1!. Neuronal activity
in the connectives and DP nerve was recorded using ex
cellular suction electrodes, while the electrical potential
cell Tr1 was recorded and stimulated using an Axoclamp
~Axon Instruments, Foster City, CA! amplifier in bridge
mode. One extracellular recording location was from the
end of one lateral connective posterior to segmental gang
2, ~referred to as the anterior connective, ACN! while the
other recording location was from the contralateral conn
tive anterior to segmental ganglion 17~posterior connective
PCN!. Since the leech nervous system is bilaterally sy
metrical, it is likely that the neural activity patterns record
in one lateral connective reflect the spike activity patte
occurring in the other connective. The only noticeable diff
ence between isolated preparations with intact lateral c
nectives and those with one lateral connective severed
an increase in the latency between Tr1 stimulation and
beginning of swimming in the latter group.

3. Physiological data

In the preparation described above, seven Tr1 stimula
trials triggered swimming and seven ‘‘spontaneous’’ sw
episodes occurred. In all seven trials where stimulation
cell Tr1 triggered swimming, we observed two consiste
changes in the neuronal activity pattern recorded from
anterior and posterior connective recording sites, ACN a
PCN, respectively. First, several seconds prior to swimm
the amount and amplitude of neural signals in ACN
creased and remained elevated throughout the duration o
swim episode. Second, coincident with the increase in A
activity, large amplitude signals ceased and there was
overall decrease in neural activity in PCN that gradually
creased before the onset of swimming@Fig. 2~a!#. An almost
identical change in ACN and PCN activity patterns occur
before the onset of all seven spontaneous swim episode
increase in ACN activity and a simultaneous decrease
PCN activity @Fig. 2~c!#. On the other hand, in 13 trial
d
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where Tr1 stimulation did not lead to swimming, no cons
tent change was evident in ACN and PCN activity patte
@Fig. 2~b!#.

III. ANALYSIS

All analyses were performed on a time series consist
of a segment of ACN and PCN recorded data. For Tr1, tr
gered swim episodes this segment, referred to as the p
stimulus segment, consisted of the portion of the time se
starting at the end of spiking activity in cell Tr1 to the ons
of swimming, which is indicated by the first burst of actio
potentials in the DP nerve~see Fig. 2!. In trials where Tr1
stimulation did not elicit swimming, the end of the pos
stimulus period occurred approximately 6 s after stimulation
of cell Tr1, which corresponded to the average swim laten
in trials where swimming occurred following stimulation o
cell Tr1. Data segments starting approximately 6 s before the
onset of swimming were used in the analyses of spontane
swim episodes.

A. Statistical and spectral measures

Each time series of extracellularly recorded ACN a
PCN signals is partitioned into non-overlapping 400-po
~0.100 s! epochs and linear measures are calculated for e
epoch. This provides time-dependent characterizations of
time series. Figure 3 shows the time dependence of
mean, standard deviation, skewness, and kurtosis of p
stimulus ACN signals for a nonswimming and a trigger
swimming case. Figure 4 shows the same graphs for
ACN signal preceding a spontaneous swimming episode.
vestigation of these figures and similar figures shows t
only the standard deviations of the poststimulus ACN sign
show any obvious differences—they increase before sw
ming starts. This is consistent with some of the qualitat
observations made in the previous section.

A crude quantification of the time course of the signa
may be obtained by performing a linear fit of their tim
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FIG. 4. Time dependence of the mean, standard deviat
skewness, and kurtosis of poststimulus ACN signals for a spo
neous swim episode.

FIG. 5. Time dependence and linear fit~dashed line! of the
standard deviation of a nonswimming case.
dependence, and using the slopes of these fits to charact
the data. Figures 5 and 6 show the standard deviations
time, and the linear fits, for post-stimulus ACN signals co
responding to nonswimming and triggered swimming. Figu
7 shows the corresponding values for an ACN signal prec
ing spontaneous swimming. Figure 8 shows the slopes
these fits for all cases of each condition. The linear fits of
signals preceding swimming, triggered as well as sponta
ous, have positive slopes. Eight of the 13 nonswimm
cases do not.

Using a t test to compare the slopes, we find that t
probability p that the post-stimulus nonswimming and tri
gered swimming ACN signals come from the same popu
tion is 9.331027. A similar comparison of the triggered
swimming and spontaneous swimming signals givesp
50.015; nonswimming vs spontaneous swimming givesp
52.231027. In contrast, a comparison of the poststimul
PCN nonswimming and triggered swimming signals giv
p50.51. Although the slope does not give an unambigu
classification of each individual signal, it clearly provides

n,
a-

FIG. 6. Time dependence and linear fit~dashed line! of the
standard deviation of a triggered swimming case.

FIG. 7. Time dependence and linear fit~dashed line! of the
standard deviation of a spontaneous swimming case.
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4830 PRE 62C. J. CELLUCCIet al.
statistically significant distinction between the two classes
signals.

Figure 9 shows the time dependence of the power spe
densities~the Gabor transforms, see@14#! of an ACN signal
after stimulation in~a! a case that did not lead to swimmin
and~b! one that led to swimming. Investigation of these a
similar figures for the other data sets shows no obvious
ferences that could be used to distinguish one condition f
the other. The autocorrelation function~Fig. 10! is the Fou-
rier transform of the power spectral density~Wiener-
Khinchin theorem, see, e.g., Ref.@15#!, so one should convey
the same information~or lack thereof! as the other. Never
theless, despite the lack of easily identifiable global featu
that may be used to distinguish the signals, there are us
consistent differences in the time dependence of the auto
relation function at small delays. Figure 11~a! shows the time
dependence of the autocorrelation at a delay of 6 points~1.5
ms! for a poststimulus time signal that did not lead to swi

FIG. 8. Slopes of the linear fits of the time dependence of
standard deviation for all non-swimming, triggered swimming, a
spontaneous swimming cases.
f
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ming; Figure 11~b! shows the time dependence of the au
correlation for one that did.

As was done for the standard deviation, we show in F
12 the slopes of linear fits of graphs such as Fig. 11 for
three conditions.t test comparisons of these values givep
58.831025 for nonswimming vs triggered swimming,p
52.131025 for nonswimming vs spontaneous swimmin
andp50.15 for triggered vs spontaneous swimming.

B. Nonlinear measures

The standard deviation, like other measures based on
tistical moments, depends only on the distribution of valu
and not on their time sequence. It is insensitive to dynam
Some time sequence-dependent information is provided
spectra or autocorrelation functions, but this information c
be mimicked by appropriately filtered noise@see,e.g., Ref.
@16# and Sec. III B 3 below#. In this section we investigate
two nonlinear measures that are capable of eliciting so
dynamical information from the data.

Traditional analyses of scalar time series such as th
done in the preceding section focus their attention on
measured variable at a time. A system characterized by m
coupled variables is more appropriately described by the
multaneous values of all the variables. These are represe
by a point in the multidimensional state space spanned by
system’s variables, and the system’s dynamics is descr
by the trajectory of this representative state space point.

In situations when only values of a scalar quant
$x1 ,x2 , . . . ,xN% are measured, the state space trajectory m
be reconstructed in anm -dimensional state space by mea
of embedding vectors of the form@17–21#,

X~n!5~xn ,xn11 , . . . ,xn1m21!. ~3.1!

Theorems by Takens@17# and Mañé @18# show that for a
sufficiently large number of clean data, and ifm is suffi-
ciently large, the trajectory in the embedding space has
same geometric and topological properties as that in
original state space. In the following, we use the method

e
d

c-
FIG. 9. Time dependence of the power spe
tral density~Gabor transform! of the poststimulus
ACN signal for~a! a nonswimming case and~b! a
triggered swimming case.
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FIG. 10. Time dependence of the autocorre
tion function of the poststimulus ACN signal fo
~top! a nonswimming case and~bottom! a trig-
gered swimming case.
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global false nearest neighbors and mutual information to
termine embedding parameters@22#.

1. Predictability

If a time series comes from a deterministic system then
principle, it is possible to predict its future values from pa
ones. One technique that has been particularly effective is
use of local approximation@11#. In its simplest form, to pre-
dict X(n1t) from X(n), we look for that past stateX(n8),
with n8,n, that is closest toX(n). We then determine wher
X(n8) is t time units later and use that state@X(n81t)# as
the prediction forX(n1t).

Our use of predictability differs from our use of the oth
measures in that we calculate a value that characterize
entire time series rather than a sequence of values that tr
its time dependence. We take nonstationarity into accoun
using a moving window for the prediction. That is, to pred

FIG. 11. Time dependence of the autocorrelation function fo
time delay of 6 time units~1.5 ms! for ~a! a nonswimming case an
~b! a triggered swimming case.
e-

in
t
he

an
cks
y

t

X(n11), we start by locatingX(n)’s nearest neighbor
X(n8) from among the previous 2500 vectors,X(n
22500), X(n22499),. . . ,X(n21). We then take as ou
prediction, Xp(n11)5X(n811)5(xn8 ,xn811 , . . . ,
xn81m21). This is done forn52501 until the end of the time
series.

As a measure of the predictability, we use the root-me
square~RMS! difference between the predicted and actu
values scaled to the signal standard deviation. We used
median value of the RMS errors to compare time series s
it is much less sensitive to outliers. In Fig. 13 we see a la
difference between the predictability of ACN and PCN s
nals in the cases that did not lead to swimming. This diff
ence is not as pronounced in the triggered and spontan
swimming cases~Fig. 14!. Since we cannot ascribe a signifi
cance to isolated values of the median prediction error for
individual signals, we use the differences between the A

a
FIG. 12. Slopes of the linear fits of the time dependence of

autocorrelation function for a time delay of 6 time units~1.5 ms! for
all nonswimming, triggered swimming, and spontaneous swimm
cases.
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4832 PRE 62C. J. CELLUCCIet al.
and PCN values to compare the different cases. Usin
pairedt test, we find that the probability that the poststimul
nonswimming ACN and PCN are equally predictable isp
59.331023. The corresponding probabilities for the trig
gered swimming and spontaneous swimming cases are
and 0.16, respectively. In the nonswimming case, the con
rent ACN and PCN signals differ significantly in predictab
ity; in the swimming cases, they do not.

2. Mean interpoint distance

For this measure we use a very simple characterizatio
the embedded trajectory, namely the average distance^r &,
between embedded vectors. We use^r & to investigate the
time evolution of the ACN and PCN signals individually a
separate univariate data, as well as together as elements
bivariate data set. In the former case, we formm-dimensional
embeddings using each signal separately; in the latter c
we use values of both ACN and PCN in the embedding.

Figure 15~a! shows the^r & vs time graph for an ACN

FIG. 13. Median prediction errors for poststimulus nonswi
ming ~nacn and npcn! and triggered~tacn and tpcn! swimming sig-
nals.

FIG. 14. Median prediction errors for poststimulus trigger
~tacn and tpcn! and spontaneous~sacn and spcn! swimming signals.
a

.75
r-

of

f a

se,

signal embedded in two dimensions in a nonswimming ca
Figure 15~b! shows a triggered swimming case. Slopes of
linear fits of the time dependence of^r & for all data sets are
shown in Fig. 16. All signals that preceded swimmin
whether triggered or spontaneous, are characterized by p
tive slopes. All but 3 of the 13 nonswimming signals ha
negative slopes.t -test comparisons show that the probab
ity, p, that the 13 nonswimming and the 7 triggered swi
ming ACN signals come from the same population is 1
31024. The distinction is even sharper in higher embedd
dimensions ~a five-dimensional calculation givesp53.2
31026).

To compare the time evolution of the ACN and PCN s
nals as separate univariate data with their behavior as
ments of a bivariate data set, we combine the first se
nonswimming trials with the seven swimming trials. Figu

-
FIG. 15. Mean interpoint distancêr &, vs time for ~a! a non-

swimming and~b! a triggered swimming ACN signal embedded
two dimensions.

FIG. 16. Slopes of the linear fits of the time dependence of^r &
for all non-swimming, triggered swimming, and spontaneous sw
ming cases for embedding dimension5 2 ~top!, and embedding
dimension5 5 ~bottom!.
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17 shows results obtained by using simultaneous value
the ACN and PCN signals as coordinates of a tw
dimensional embedding. At-test comparison of the firs
seven ACN nonswimming signals with the seven trigge
swimming signals givesp58.231024. A similar compari-
son of the PCN signals givesp50.54, indicating that the
PCN signals in the nonswimming and triggered swimm
cases are indistinguishable. Nevertheless, comparing th
sults shown in Fig. 17 in which we use a two-dimension
embedding using both ACN and PCN signals givesp51.7
31024, a slightly better discrimination than that obtaine
using just the ACN signal. This suggests some correla
between the two data streams, but not enough to make m
than an insignificant difference. Using a six-dimensional e
bedding gives a slightly worse discrimination, wi
p54.431024.

3. Surrogate data and dynamical information.

Results obtained above using the standard deviation
pend only on statistical information that is insensitive to t
time order of the data. Differences found using nonline
predictability and mean interpoint distance suggest that th
may be dynamical differences as well. Here we use surro
data to seek further corroboration of the presence of dyna
cal differences.

The method of surrogate data has become an impor
tool for dynamical analysis@16,23–25#. Given a data set, the
method consists of creating other data sets that share s
properties of the original but which are otherwise rando
Similarities, or lack thereof, of the values of dynamical me
sures applied to the original and to the surrogates are
used to test the null hypothesis that the original data bel
to the same class of random data as the surrogates.

The two types of surrogates we use are~1! a random
shuffle of the elements of each epoch, and~2! a phase-
randomized surrogate of each epoch. The latter is obta

FIG. 17. Slopes of the linear fits of the time dependence of^r &
for nonswimming and triggered swimming using simultaneous v
ues of the ACN and PCN signals as coordinates of a tw
dimensional embedding.
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by calculating the finite Fourier transform of the origin
data, randomizing the phases of the transform, symmetriz
the randomized transform to assure a real inverse, and
taking the inverse transform to generate the surrogate@19#.
Shuffled surrogates have the same distributions and there
the same standard deviations as the originals. Random p
surrogates have the same power spectral densities~and there-
fore the same autocorrelations! but not the same standar
deviations. Thus, for instance, at-test comparison of the au
tocorrelation functions~at delay 6! of the ACN nonswim-
ming data with a single shuffled surrogate data set givep
50.33, while a similar comparison with a random phase s
rogate givesp50.93.

To study how surrogate data affect the behavior of^r &,
each ACN signal is partitioned into nonoverlapping 40
point epochs as above. Each epoch is used to genera
surrogate and the time dependence of^r & is calculated in five
dimensions for the sequence of surrogate epochs. The pr
dure is implemented five times for each of the two types
surrogates. A pairedt -test comparison of the slopes of th
^r & vs time curves for the nonswimming ACN signals wi
the averages of their shuffled surrogates givesp50.66 while
a similar comparison of the triggered swimming ACN si
nals givesp58.631025. The corresponding values for com
parisons with random phase surrogates arep50.46 for non-
swimming andp52.531025 for triggered swimming. A
comparison using spontaneous swimming givesp51.37
31025 for shuffled data andp5 1.7531025 for random
phase surrogates. These results suggest the absence o
namical information in the signals that do not lead to swi
ming and their presence in signals that do lead to swimm
The statistical differences, which are significant, between
original triggered swimming signals and their surrogates
dicate that there is information in the original that is d
stroyed in the process of creating the surrogates even if th
surrogates preserved the standard deviation in one case
the power spectrum in the other.

IV. CONCLUDING REMARKS

The physiological observations show that both the AC
and PCN signals behave differently when the leech is ab
to swim from when it is not. The discrimination betwee
signals that precede swimming from those that do not can
made in a statistically significant manner using linear as w
as nonlinear dynamical measures. Surprisingly, this can
done more clearly for ACN than for PCN signals. The
measures, however, can only distinguish different clas
they do not unambiguously classify individual signals. U
of surrogate data suggests that the two classes of sig
differ not only statistically, but dynamically as well.

Using linear fits to characterize time dependence is
oversimplification that is clearly insensitive to much of th
complexity of the computed measures. This oversimplifi
tion may underlie the inability to identify statistical differ
ences between PCN signals. More sophisticated ana
would likely reveal details that may enable unambiguo
classification of individual signals or lead more directly
the underlying biology.

Even with these limitations, the linear and nonline
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analyses, along with the analysis of surrogate data, highl
the importance of understanding the temporal characteris
of neuronal activity in the leech ventral nerve cord to det
mine the underlying physiology controlling swim initiation
.
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Changes in the total amount of activity in the nerve co
although important, clearly do not adequately describe
pattern of neuronal activity in the leech nerve cord that p
dicts whether a given stimulus will initiate swimming.
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