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We investigate, both experimentally and theoretically, the period-doubling bifurcation to alternans in
heart tissue. Previously, this phenomenon has been modeled with either smooth or border-collision
dynamics. Using a modification of existing experimental techniques, we find a hybrid behavior: Very close
to the bifurcation point, the dynamics is smooth, whereas further away it is border-collision-like. The
essence of this behavior is captured by a model that exhibits what we call an unfolded border-collision
bifurcation. This new model elucidates that, in an experiment, where only a limited number of data points
can be measured, the smooth behavior of the bifurcation can easily be missed.
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Many nonlinear systems display a bifurcation, where the
system’s response changes qualitatively as an adjustable
parameter is varied [1]. Nonlinear systems described by
smooth differential equations or maps have been thor-
oughly investigated for many years. More recently, bifur-
cations occurring in piecewise smooth systems, such as a
border-collision bifurcation, have come under investiga-
tion. Border-collision bifurcations, which display richer
behaviors than smooth bifurcations [2], occur in a variety
of systems, such as mechanical and electrical devices that
involve sudden switching of a component.

The primary purpose of this Letter is to describe experi-
mental observations and a theoretical model of the bifur-
cation to alternans (defined below) in paced bullfrog
cardiac tissue. This bifurcation is important because it
can initiate ventricular fibrillation [3–5], which often
underlies sudden cardiac death, one of the leading causes
of death in the United States [6]. Previous research has
modeled the bifurcation as either the smooth or the border-
collision type to describe the bifurcation to alternans. We
find that neither model is adequate. Specifically, in inves-
tigating the system’s sensitivity to perturbations, we find
smoothlike behavior near the bifurcation point, while fur-
ther away the behavior is border-collision-like. This ap-
parently contradictory behavior can be understood
qualitatively using a 1D mapping model that exhibits
what we call an unfolded border-collision bifurcation.

Before describing our findings, we review the behavior
of paced cardiac tissue. An applied electrical stimulus
induces an action potential, which is the characteristic
time course of the transmembrane voltage. In experiments,
the dynamical state of the tissue is often described by
measuring the action potential duration (APD). The pacing
interval between stimuli, known as the basic cycle length
(B), is the bifurcation parameter. If, under such periodic
pacing, M stimuli elicit N unique action potentials, we

refer to the behavior as M:N behavior. A transition from
one response pattern to another under changes in B are
mediated by bifurcation [1], and the bifurcation point is
denoted by Bbif . For slow pacing, 1:1 behavior is observed,
where each action potential duration is identical. As B is
shortened, a bifurcation occurs, which can give rise to
either a 2:2 or a 2:1 response [7]. The 2:2 behavior, where
APD alternates in a long-short pattern, is called alternans.
In their pioneering work, Nolasco and Dahlen [8] modeled
the transition to alternans as a supercritical period-
doubling bifurcation of a smooth mapping. More recently,
Sun et al. [9] introduced a piecewise smooth mapping
model for a cardiac conduction system that exhibits a
border-collision period-doubling bifurcation [10,11].
Although they studied conduction times through the atrio-
ventricular node to the bundle of His, their result implies
that the bifurcation to alternans in paced cardiac tissue
might be of the border-collision type.

In principle, smooth and border-collision period-
doubling bifurcations can be distinguished based on their
bifurcation diagrams, where the steady-state values of
APD are plotted as a function of B. For a smooth period-
doubling bifurcation, the two bifurcating curves meet at the
bifurcation point to form a single smooth curve, as shown
in Fig. 1(a). By contrast, for a border-collision bifurcation,
the two branches generally meet at a sharp angle, as shown
in Fig. 1(b). However, in experiments with cardiac tissue, it
is difficult to obtain sufficient resolution in the bifurcation
diagram to distinguish between these behaviors. For ex-
ample, Figs. 1(a) and 1(b) show that the same set of
discrete data (dots) is consistent with either type of model
(lines). Attempts to gather more data close to the bifurca-
tion are limited by the fact that the position of the bifurca-
tion point is not known ahead of time. In addition, the
response of excised cardiac tissue changes gradually over
time, moving the bifurcation point.
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A more robust method of determining the type of the
bifurcation is the alternate-pacing technique that was origi-
nally introduced by Heldstab et al. [12]. In the context of
cardiac tissue, alternate pacing means perturbing the nomi-
nal pacing interval B0 so that, for the nth stimulus,

 Bn � B0 � ��1�n�; (1)

where � specifies the perturbation amplitude. As a result of
such pacing, APD alternates in a long-short pattern, and we
denote the corresponding steady-state values by APDlong

and APDshort. To quantify the system’s sensitivity to per-
turbations, we define a gain as

 � �
APDlong � APDshort

2�
: (2)

We emphasize that B0 is in the 1:1 regime. It has been
suggested that this protocol can determine the presence of
alternans before its actual occurrence (cf. [13]).

In our previous work [14,15], we showed that studying �
as a function of � for fixed B0 (close to the bifurcation
point), rather than as a function of B0 for a fixed (small) �,
permits a clearer distinction between a smooth and a
border-collision bifurcation. The results of those papers
are illustrated in Figs. 1(c)–1(f). Figures 1(c) and 1(d)
show that the qualitative dependence of � on B0 is similar
for a smooth and border-collision bifurcation, especially
when observed through discrete data points. In contrast,
Figs. 1(e) and 1(f) show that the dependence of � on � is
very different for the two bifurcation types: In the case of
the smooth bifurcation, � increase as � decreases, and the
opposite occurs in the case of a border-collision bifurca-
tion. In particular, for a border-collision bifurcation and

finite B0 � Bbif , perturbations are amplified only when � is
large enough to push the system over the border. However,
because of the uniqueness in trends between a smooth
model and a border-collision model, we are able to dem-
onstrate that both models are inadequate for the case when
both types of trends in � vs � are present.

To understand how the trend in � vs � is exhibited
gernerically, consider the border-collision case shown in
Fig. 1(b). Here APD is a piecewise smooth function of B,
and, therefore, the derivative of the mapping has a discon-
tinuity located at Bbif . Therefore, when � is sufficiently
large relative toB0 � Bbif , the long and short responses due
to alternate pacing lie on opposite sides of the surface
across which the underlying mapping is nonsmooth; as a
result, � exhibits a discontinuity in its derivative located at
Bcrit [Fig. 1(d)] and �crit [Fig. 1(f)]. On the other hand,
since the mapping is continuous for the smooth supercriti-
cal period-doubling bifurcation case illustrated in Fig. 1(a),
no critical values exist as � varies with respect to B0

[Fig. 1(c)] and � [Fig. 1(e)].
To investigate the bifurcation type experimentally, we

perform the alternate-pacing protocol in 6 frog prepara-
tions. In these experiments, the heart is excised from an
adult bullfrog (Rana catesbeiana) of either sex. After the
pacemaker cells are cut away, the top half of the ventricle is
removed and placed in a chamber that is superfused with a
room-temperature, recirculated physiological solution [7].
A bipolar extracellular electrode applies 2-ms-long rectan-
gular current pulses to the epicardial surface of the tissue
[16]. The current, whose typical amplitude is twice the
value needed to elicit a response for slow pacing, initiates a
propagating wave of excitation. Transmembrane voltage is
measured with a glass microelectrode filled with KCl con-
ducting fluid. Before collecting any data, the tissue is paced
at B0 � 1000 ms for about 30 minutes. We collect data at a
sampling rate of 4 kHz. The data are then processed using a
custom-written MATLAB code [17].

We implement the alternate-pacing protocol experimen-
tally by carrying out the following steps: (i) We pace at B0

for two minutes, during which we record the transient
behavior of the APDs as they reach a steady state of either
a 1:1 or a 2:2 rhythm; (ii) we perturb B0 for 20 seconds at
one value of � and record the subsequent APDs; (iii) we
repeat step (ii) three more times, each time with a new
value of � (for the majority of trials, � sweeps from high to
low, to include 20, 15, 10, and 5 ms; in one trial, we reverse
the order); and (iv) the perturbations are turned off and
pacing at B0 is resumed for 20 seconds to confirm that the
steady-state value of the APD does not drift. Steps (i)–(iv)
are repeated for decreasing values of B0 until persistent
alternans over several B0’s ensue or the tissue fails to
respond to every applied stimuli. Twelve out of 51 trials
exhibited a transition to alternans. Typically, B0 is de-
creased in steps of 25 ms, which means that the last B0

with a 1:1 response is within 25 ms of Bbif .
To analyze the results, we view the trend in � vs � at

each B0 and determine the statistical significance of the
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FIG. 1. Schematic bifurcation diagrams with discrete sam-
pling. The sampled points (solid dots) are identical for the
(a) smooth and (b) border-collision bifurcations. (c–f) Alter-
nate pacing: The trend in � vs B is illustrated for (c) smooth and
(d) border-collision bifurcations, and the trend in � vs � is
illustrated for (e) smooth and (f) border-collision bifurcations.
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trend [17]. In six trials from four frogs, we find that �
shows an increasing trend as � decreases for B0 closest to
Bbif ; a typical example is shown in Fig. 2(a), which agrees
with a smooth bifurcation [recall Fig. 1(e)]. However, three
other trials from two frogs demonstrate a decreasing trend
in � as � decreases; a typical example is shown in Fig. 2(b),
which agrees with a border-collision bifurcation [recall
Fig. 1(f)]. In two other trials from two frogs, there are no
significant variations in � for different �’s, and, therefore,
these trials cannot be classified into either category. These
results call into question the assumption that the transition
is either a smooth or a border-collision bifurcation; rather,
it appears that both behaviors are present to some degree,
and, therefore, the model describing the transition to alter-
nans must include features of both types of behavior.

The remaining experimental trial provides the most
compelling evidence for the coexistence of both types of
behaviors. Specifically, we see a smooth behavior when
B0 � Bbif � 25 ms, but a border-collision behavior when
25 ms � B0 � Bbif , as shown in Figs. 3(c) and 3(d), re-
spectively. Figure 3(b) is a plot of steady-state APD vs the
diastolic interval D, where D � B0 � APD; the signifi-
cance of Fig. 3(b) will be discussed in the limitations
paragraph. Figure 3(a) shows � vs B0 for different values
of �, where it is seen that these curves cross one another.
This crossing is not consistent with either a smooth or
border-collision period-doubling bifurcation. The presence
of such a crossing is one of our most revealing experimen-
tal results.

Our experimental observations can be explained with a
1D mathematical model of the form

 APD n�1 � f�Dn�; (3)

where n is the beat number. First, suppose that f is a
piecewise linear function of the form

 APD n�1 � A0 � ��Dn �Dth� � �j�Dn �Dth�j; (4)

where A0, Dth, �, and � are constants. The derivative of f
is discontinuous when Dn � Dth, where APDn � A0. This
map exhibits a border-collision period-doubling bifurca-
tion under the condition �1<�� �< 1<�� � and
�1<�2 � �2 < 1. Now let us replace j�Dn �Dth�j in

map (4) with
��������������������������������������
�Dn �Dth�

2 �D2
s

p
, where Ds is a small

parameter, so that

 APD n�1 � A0 � ��Dn �Dth� � �
��������������������������������������
�Dn �Dth�

2 �D2
s

q
:

(5)

We refer to map (5) as an unfolding [18] of map (4), which
reduces to map (4) when Ds � 0. For any Ds � 0, the
unfolded map (5) is smooth and exhibits what is techni-
cally a smooth period-doubling bifurcation. Nevertheless,
the dynamics of maps (4) and (5) exhibit no significant
differences except when B� Bbif is less than or on the
order of Ds.

We simulate the alternate-pacing protocol with map (5)
using the parameters � � 0:79, � � �0:69, A0 �
621 ms, Dth � 164 ms, and Ds � 10 ms. The parameter
Ds sets the scale for the size of the window of smoothlike
behavior in the unfolded border-collision model.
Figure 4(a) shows � vs B0 for different values of �.
These curves cross one another in the region 775 ms<
B0 < 800 ms as shown in Fig. 4(a), similar to our experi-
mental results shown in Fig. 3(a). In Fig. 4(c), � vs � for
B0 � 775 ms displays a trend consistent with a smooth
bifurcation [comparable to Fig. 3(c)]. On the other hand, in
Fig. 4(d), � vs � for B0 � 800 ms shows a trend consistent
with a border-collision bifurcation, also comparable to our
experimental results shown in Fig. 3(d). To summarize, the
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FIG. 2. Trials displaying two different trends in � vs � as
revealed by alternate pacing for two different frogs. The trend
is consistent with (a) a smooth period-doubling bifurcation
(B0 � 300 ms, alternans observed at B0 � 275 ms so that
275 ms<Bbif < 300 ms) and (b) a border-collision bifurcation
(B0 � 700 ms, alternans observed at B0 � 675 ms so that
675 ms<Bbif < 700 ms). The error bars represent the statistical
and systematic error in measuring APD; their variation is domi-
nated by systematic errors.
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FIG. 3. Experimental evidence consistent with both a smooth
and a border-collision bifurcation in a single trial. (a) The trend
in � vs B0 for four different values of � (legend). We observe
alternans at B0 � 750 ms so that 750 ms<Bbif < 775 ms.
(b) The corresponding dynamic restitution curve (see text for
details). Some of the data from this trial are replotted in (c) and
(d) as � vs � for B0 � 775 ms and B0 � 800 ms, respectively.
The behavior in (c) for B0 � 775 ms is consistent with a smooth
bifurcation and in (d) for B0 � 800 ms is consistent with a
border-collision bifurcation.

PRL 99, 058101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
3 AUGUST 2007

058101-3



period-doubling bifurcation of map (5) is smooth, but the
effects of this smoothness can be seen only in a narrow
range of B0, when B0 � Bbif is on the order of Ds, exactly
the behavior observed experimentally. Furthermore, in
different experimental trials, the precise location of Bbif

varies so that smooth behavior is not always easy to
capture. Thus, our experimental results presented in
Fig. 2 are elucidated.

Since the unfolded border-collision bifurcation model
fits the data obtained through alternate pacing, this indi-
cated that existing ionic models may need to be adjusted to
include elements of nonsmooth behavior. Modifications to
models may involve tracking a mechanism that becomes
activated when a threshold in state space is crossed. For
example, a piecewise smooth model [19], which was used
recently to capture calcium cycling dynamics, could con-
tribute to the mechanism that gives rise to the hybrid
behavior.

We note that map (5) faces some limitations. For ex-
ample, it is known that the dynamic restitution behavior of
cardiac tissue (how steady-state values of APD depend on
D) cannot be adequately described by a simple 1D map
[20]. Not surprisingly, although map (5) fits the gain under
alternate pacing rather well, it cannot capture all of the
restitution phenomena. For example, comparing Fig. 3(b)
to Fig. 4(b), we see that the agreement between the two
dynamic restitution curves is poor. Nevertheless, map (5)
suggests that existing models should be modified to include
nonsmooth features.

Finally, our results suggest that the proposed clinical use
of alternate pacing [13] may not be successful. In applying
alternate pacing to a map that exhibits a smooth bifurca-

tion, one expects large � for B0 � Bbif . As a result, in the
clinic, the propensity for alternans could be revealed using
pacing rates that are slow enough to avoid inducing a life-
threatening arrhythmia. However, we find that � remains
small until the pacing rates are decreased to a value very
close to the bifurcation, greatly diminishing the diagnostic
value of such a procedure.
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FIG. 4. Theoretically predicted behavior of the unfolded
border-collision bifurcation [map (5)]. (a) The trend in � vs B0

for four different values of � (legend). Alternans occurs at Bbif �
750 ms. Some of the data from this simulation are replotted in
(c) and (d) as � vs � for B0 � 775 ms and B0 � 800 ms,
respectively. The trend in � vs � is consistent with a smooth
bifurcation in (c) and a border-collision bifurcation in (d).
(b) shows the dynamic restitution curve as an illustration of
the steady-state behavior for the range of B0 ’s in (a).
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