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a b s t r a c t 

Severe, long-lasting influenza infections are often caused by new strains of the virus. The long duration 

of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This 

is particularly problematic since for new strains there is often no vaccine, so drug treatment is the first 

line of defense. One strategy for trying to minimize drug resistance is to apply drugs periodically. Dur- 

ing treatment phases the wild-type virus decreases, but resistant virus might increase; when there is no 

treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of re- 

sistant virus. A stochastic model of severe influenza is combined with a model of drug resistance to sim- 

ulate long-lasting infections and intermittent treatment with two types of antivirals: neuraminidase in- 

hibitors, which block release of virions; and adamantanes, which block replication of virions. Each drug’s 

ability to reduce emergence of drug resistant mutants is investigated. We find that cell regeneration is 

required for successful implementation of intermittent treatment and that the optimal cycling parameters 

change with regeneration rate. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The influenza virus causes a potentially fatal illness that ap-

ears in both annual seasonal outbreaks and in occasional pan-

emics. While there are vaccines that can prevent infection, they

ust be re-formulated for every new strain ( Jang and Seong, 2014 ;

oema et al., 2015 ), causing a delay in the availability of an ade-

uate vaccine when a new strain of influenza arises. Unfortunately,

nfluenza mutates rapidly ( Drake, 1993 ), causing genetic drift of

trains, and can also undergo re-assortment events ( Qiao et al.,

014 ; Westgeest et al., 2014 ), creating entirely new strains. This

eans that vaccines are not a good first line of defense against

ew strains of influenza. 

Influenza antivirals are typically effective against a wide variety

f strains of influenza ( Spanakis et al., 2014 ), making them a better

hoice for controlling spread of a new strain of influenza. Unfortu-

ately, the rapid mutation rate of influenza also causes problems

ith the use of antivirals. Influenza resistance to antivirals arises

hrough a single amino acid mutation ( Abed et al., 2005; Baz et al.,

006; Bright et al., 2006; Gubareva et al., 2000 ), so resistance to

ntivirals can emerge quickly ( Bright et al., 2006; Dharan et al.,

009 ; Zaraket et al., 2010 ). There are currently two classes of an-

ivirals used for treatment of influenza. Adamantanes prevent un-
∗ Corresponding author. 

E-mail address: h.dobrovolny@tcu.edu (H.M. Dobrovolny). 
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oating of the virion after it has entered the cell by blocking the

ction of the M2 matrix protein ( Abed et al., 2005 ). Unfortunately,

esistance to adamantanes in circulating strains is already high

 Bright et al., 2006; Dong et al., 2015 ), limiting its usefulness. Neu-

aminidase inhibitors prevent release of the virion from the cell

y blocking the action of the neuraminidase surface protein ( Abed

t al., 2002; Gubareva et al., 20 0 0 ). Most circulating strains are still

ensitive to neuraminidase inhibitors ( Spanakis et al., 2014 ), mak-

ng them the antiviral of choice for pandemic stockpiles. 

Given the rapid mutation rate of influenza and the limited

umber of antivirals available to treat influenza, it is important to

nvestigate treatment strategies that might limit the emergence of

esistance during the course of an infection. One strategy used in

ther infectious diseases is intermittent treatment ( de Bree et al.,

017; Goujard et al., 2012 ). Intermittent treatment involves peri-

dic switching between antiviral treatment and no treatment. If

 drug resistant mutation arises during the treatment phase, its

eplication will not be suppressed by the antiviral, so the drug-

esistant virus will multiply. Once treatment is stopped, however,

ny remaining wild-type virus can also freely multiply, and will

opefully out-compete the drug-resistant strain, driving down the

umber of drug-resistant virions. If the cycles of treatment and no

reatment periods are correctly optimized, then both wild-type and

rug-resistant virions can be eradicated ( de Bree et al., 2017 ). Note

hat this strategy will only work consistently if the drug-resistant

train is less fit than the wild-type strain, which seems to be the

https://doi.org/10.1016/j.jtbi.2018.01.012
http://www.ScienceDirect.com
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case for at least some influenza drug-resistant mutations ( Abed

et al., 2016; Baek et al., 2015; Burnham et al., 2015; Butler et al.,

2014; Paradis et al., 2015; Pascua et al., 2016 ). 

While drug resistance can emerge during the course of a typi-

cal short duration seasonal infection ( Dobrovolny and Beauchemin,

2017; Perelson et al., 2012 ), there is little time for it to be trans-

mitted to other people. The bigger concern for transmission and

spread of drug-resistant influenza is long-lasting, severe infections

which allow for shedding of drug resistant influenza over several

weeks or even months ( Bruminhent et al., 2014; Eshaghi et al.,

2014; Ghedin et al., 2012; Hurt et al., 2013 ). While severe influenza

infections are long compared to seasonal infections, they are still

much shorter than human immunodeficiency virus (HIV) or hep-

atitis B virus (HBV) infections, which sometimes use intermittent

treatment, and offer more limited choices for the length of the

treatment on and treatment off periods. 

In this paper, we study the emergence of drug resistance dur-

ing severe infections by combining two models of within-host in-

fluenza, one which models severe infections ( Dobrovolny et al.,

2010 ) and one which models the emergence of drug resistance

( Dobrovolny and Beauchemin, 2017 ). We apply intermittent treat-

ment to the model via a switching function that either applies a

constant drug treatment, or leaves the system untreated. We find

that cell regeneration is critical for intermittent treatment to work

and that when cell regeneration is fast enough, the periodicity of

switching between treatment and no treatment phases does not

affect the effectiveness of the treatment. 

2. Methods 

2.1. Modeling influenza infections 

To capture the dynamics of severe influenza infections, the sin-

gle cell population differential equation model with delayed viral

production, as proposed in Baccam et al. (2006) , was extended to

a two target cell model in Dobrovolny et al. (2010) . In terms of

the nomenclature, we separated the two target cells into default

(subscript d) and secondary (subscript s) cells with each contain-

ing a wild-type (subscript wt) and a mutant (subscript μ) sub-

population. In the model, the default cells represent the preferred

target for human influenza, while the secondary population repre-

sents cells that can be infected by human influenza, but with more

difficulty. The key parameters that control the differences between

the two cell populations are the relative susceptibility to infection

( r β ∈ R 

+ ), the relative viral production rate ( r p ∈ R 

+ ) and the frac-

tion of initial secondary target cells ( r T ∈ [0 , 1] ). Initial allocation of

a secondary cell population is a crucial step that makes our model

capable of reproducing the dynamics of long-lasting influenza in-

fections. Note that r T only appears in the initial conditions and

therefore does not explicitly appear in the system of differential

equations. 

The initial amount of wild-type virus ( V wt ) and mutant virus

( V μ) proceed to infect primary target cells ( T d ) at rate β and sec-

ondary target cells ( T s ) at rate r ββ . Once infected, cells migrate

into their eclipse phase ( E ), where they are producing viral proteins

and RNA, but not yet releasing new virus, and then turn into pro-

ductively infected cells I at rates τ−1 
E 

and τ−1 
I 

, respectively. There

are four distinct types of cells: any combination of default or sec-

ondary with wild-type or mutant are possible. Once primary (sec-

ondary) target cells have reached their productive stage, they will

produce virus at rate p ( r p p ) while slowly dying off at rate c . When

target cells die they accumulate as D , from which they may regen-

erate back to available target cells T at rate � . 

An infection is medicated with drugs of two types. Drugs based

on adamantanes prevent the virus from infecting available target

cells and the drug’s efficacy on wild-type and mutant strains is
ontrolled via parameters m wt and m μ. Neuraminidase inhibitor

ased drugs (NAI) do not prevent cell infection but prevent pro-

uction of new virions. The drug’s efficacy is controlled by the pa-

ameters n wt and n μ. All efficacies assume values between 0 and 1

nd represent the relative reduction in infection rate (for adaman-

anes) or production rate (for NAIs) caused by the antiviral. We

ake the assumption that the efficacy remains constant during

reatment, even though antivirals are taken as pills which causes

 time-varying drug concentration. Recent work has shown that

he assumption of constant drug efficacy adequately approximates

ime-varying drugs ( Palmer et al., 2017 ). 

We additionally would like to allow the mutation of each virus

ntity from its wild-type into a drug-resistant strain (and vice

ersa). In the model, this is incorporated via the choice of muta-

ion rate μnt that fixes the probability with which either virus type

ill mutate. A number of different mutations have been reported

or adamantanes ( Abed et al., 2005; Bright et al., 2006; Hay, 1996;

ayden, 1996 ) and NAIs ( Baz et al., 2006; Gubareva et al., 20 0 0 ),

ut in our model we restrict ourselves to the most common type

f mutation (S31N in the M2 protein for amantadines and H275Y

n the N1 protein for the NAI-based drug oseltamivir) and assume

hat they occur at the average mutation rate of influenza A, namely

nt = 7 . 3 × 10 −5 per nucleotide per replication ( Drake, 1993 ). 

The model resulting from these contemplations is a system

omprised of 14 differential equations. These can be compacted by

eans of an index j that assumes a wildtype or mutant stance, 

˙ 
 = 

(
˙ T d 
˙ T s 

)
= −

(
βwt V wt + βμV μ

)(1 0 

0 r β

)
T + � D (1a)

˙ 
 j = 

(
˙ E j 
d 
˙ E j s 

)
= (1 − m j ) β j V j 

(
1 0 

0 r β

)
T − τ−1 

E E j (1b)

˙ 
 j = 

(
˙ I j 
d 
˙ I j s 

)
= τ−1 

E E j − τ−1 
I I j (1c)

˙ 
 j = (1 − n j ) p j 

⎛ 

⎜ ⎝ 

1 − μnt 

r p − r p μnt 

μnt 

r p μnt 

⎞ 

⎟ ⎠ 

·
(

I wt 

I μ

)
− cV j (1d)

˙ 
 = 

(
˙ D d 

˙ D s 

)
= τ−1 

(
I wt + I μ

)
− � D . (1e)

The different compartments of the model and their interactions

re shown in Fig. 1 . In the absence of cell regeneration, this is a

arget cell limited model where the infection terminates when all

arget cells have been infected. This does not equate to death of

he patient however, since not all cells in the respiratory tract are

arget cells for influenza ( Chan et al., 2013; Hui et al., 2017 ). We

nclude cell regeneration as proportional to the number of dead

ells which represents stimulation of reproduction by cell death

 Beers and Morrisey, 2011 ). Since the two target cells of the model

epresent two different types of cells, we assume that death of de-

ault cells stimulates regeneration of default cells and death of sec-

ndary cells stimulates regeneration of secondary cells. 

All of the differential equations that describe our model are

ully deterministic and can be solved by choice of a stable integra-

ion method. In doing so, the observables will assume non-discrete

alues (along the positive real axis), which is a behavior that we

ould like to restrict, due to the discrete nature of the underly-

ng cell model. ODEs produce the mean-field dynamics and are

ot representative of the course of the infection in a single patient.

ome patients will clear the wild-type virus before a drug resistant

utant appears and not have any infection at all. In other patients,
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Fig. 1. An illustration of the cell model used to study severe influenza infections, as described in Eqs. (1a) –(1e) . When infected, target cells enter an intermediate eclipse 

phase. Once fully infected, they start to produce new virus, then die out eventually. Depending on the choice of regeneration rate dead cells may come back as target cells, 

which is indicated by their dotted connection. An adamantane drug stops cells from entering into the eclipse phase altogether, while NAI-based drugs hinder the production 

of new virus. Since we allow virus cells to mutate (which they will do at rate μnt ), infected cells may produce both wild-type and mutant virus, indicated by the connections 

between infected subpopulations. 
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Fig. 2. Shown are wild-type (circles) and mutant (diamonds) virus curves for a 

common (dotted) and a severe (solid) influenza infection. In the common infec- 

tion, the virus is at peak value after about 3 dpi and is then quickly cleared from 

the system. Severe infections are inherently different: the virus arrives at the same 

high levels early on but then continues to rise from there and even after as many 

as 25 dpi the infection has not withdrawn. The severe infection uses values of r p 
and r β given in Table 1 , while the seasonal infection uses the same r β , but uses 

r p = 10 2 . 

2

 

t  

t  

f  

b  

p  
he drug resistance mutation appears and an infection results. Use

f the ODE will result in an infection every time since ODEs allow

ractions of virus to infect fractions of cells, when in reality we

eed at least one virion to infect one cell in order for the infection

o proceed. To ensure this, we corrected the result of each timestep

ia implementation of the Euler-Maruyama method ( Kloeden and

laten, 1992 ). 

.2. Model parameters 

Throughout simulations, the initial number of overall target

ells was set to T 0 = 4 × 10 8 cells, which coincides with anatomi-

al estimates for the human upper respiratory tract ( Baccam et al.,

006 ). We assumed that the initial viral inoculum consists entirely

f wild-type virus. We also fixed r T at 70%, as in ( Dobrovolny et al.,

010 ), which was based on estimates of the proportion of ciliated

o non-ciliated cells in the human lung. The remaining parameters

re fixed to values determined in Baccam et al. (2006) from model

ts to patient data. Default parameters used in the simulations are

isted in Table 1 . 

The two target cell population model is able to capture both

evere and seasonal infections, depending on the choice of pa-

ameters r p and r β . In a recent work, the parameter space of

his model was studied in detail for the specific parameters that

re able to induce a severe influenza infection ( Dobrovolny et al.,

010 ). Since we are interested in modeling a long-lasting infec-

ion, we chose (r β , r p ) = ( 10 −4 , 2 × 10 3 ) . For a comparison of a se-

ere influenza infection and a common infection in the absence of

ell regeneration as they evolve over the days post infection (dpi),

ee Fig. 2 . 
.3. Relative fitness 

To study the efficacy of an adamantane-based drug on different

ypes of cell compositions, we introduced a parameter that charac-

erizes the relative fitness βfit between mutant and wild-type in-

ection rates. When studying the efficacy of a NAI-based drug (that

locks the release of viral particles), we varied instead how the

roduction rate of mutant and wild-type virus compare (denoted
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Table 1 

Initial conditions and parameter values of the model. Viral titer amounts are mea- 

sured in units of [ V ] = TCID 50 / mL . Parameter values are from Baccam et al. (2006) , 

except for [ a ] , [ b ] , and [ c ] which are from Dobrovolny et al. (2010) , Drake (1993) , and 

Beers and Morrisey (2011) , respectively. 

Symbol Description Default value 

T 0 Total number of target cells 4 × 10 8 

( E 0 , I 0 , D 0 ) Initially eclipsed, infected, dead cells (0, 0, 0) 

V 0 Initial viral inoculum 7 . 5 × 10 −2 [ V ] 

τ E Length of eclipse phase 6 h 

τ I Length of virus production phase 4.6 h 

c Virus clearance rate 1 / 4 . 6 h −1 

βd,wt Cell infection rate (default, wild-type) 3 . 2 × 10 −5 [ V ] −1 · d −1 

p d,wt Virus production rate (default, wild-type) 4 . 6 × 10 −2 [ V ] · d −1 

r [ a ] 

β
Ratio of secondary to default β 10 −4 

r [ a ] 
p Ratio of secondary to default p 2 × 10 3 

μ [ b] 
nt Mutation rate 7 . 3 × 10 −5 

� Cell regeneration rate 0 . 03 d −1 
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by p fit ). 

βfit = 

βμ

βwt 
, p fit = 

p μ

p wt 
. (1)

Experimental measurement of viral fitness is not yet well-

defined ( Wargo and Kurath, 2012 ), and experimental measure-

ments of relative fitness are not based on the definition of fitness

used here ( Wu et al., 2006 ), so there are no good estimates for

relative fitness. Further complicating matters, relative fitness for a

specific drug-resistance mutation seems to depend on the strain

in which it occurs ( Butler et al., 2014; Paradis et al., 2015; Pinilla

et al., 2012 ) and experiments sometimes give contradictory results

on whether a particular mutation increases or decreases fitness

( Brookes et al., 2011; Herlocher et al., 2004; Ives et al., 2002; Par-

adis et al., 2015; Pinilla et al., 2012 ; Wong et al., 2012 ). Additional

compensatory mutations will also alter the fitness of the mutant

virus ( Bloom et al., 2010; Govorkova et al., 2010 ). For intermittent

treatment to work, the fitness of the mutant must be less than that

of the wild-type, but large enough to cause some breakthrough in-

fections. Without experimental guidance as to an exact value, and

based on our simulation results, we decided to use a relative fit-

ness of 0.5. 

2.4. Intermittent treatment 

We apply intermittent treatment through a switching function

that changes the value of m j for adamantanes or n j for NAIs from

zero (no treatment) to some fixed non-zero value (treatment). The

duration of treatment and no treatment phases is governed by

the parameters t on and t off, respectively. Simulations start with ei-

ther m j or n j non-zero for a duration of t on , followed by both

m j = n j = 0 for a duration of t off. This switching scheme with fixed

 on and t off is then continued for the remainder of the simulation.

Note that our assumption that drug treatment starts at t = 0 mod-

els post-exposure prophylaxis. 

3. Results 

3.1. Drug resistance during a severe infection 

We first used our model to examine the dynamics of drug re-

sistance during traditional continuous treatment. We assume that

antiviral treatment starts at the same time as the infection ( t = 0 ),

immediately affecting viral replication in all cell types, and remains

constant over its entire duration. As a measure of the likelihood

of an infection impairing its host, we simulated an ensemble of

10 0 0 identical cell models and monitored the number in which

the virus exceeded the symptomatic threshold, fixed at a value
f 10 4 [ V ] ( Dobrovolny et al., 2010 ). Clinically, these are known as

reakthrough infections, since patients get sick despite undergo-

ng prophylactic treatment. The measurements were repeated for

oth adamantane- and NAI-based drugs with varying efficacies, al-

owing us to identify similar general trends that hold regardless of

he precise potency of the drug ( Fig. 3 ). For both drugs, the rela-

ive fitness has to surpass a threshold value for a finite probabil-

ty of breakthrough infections. For a given relative fitness, adaman-

anes are more effective at preventing breakthrough infections. Un-

ortunately, adamantane resistance is already widespread ( Bright

t al., 2006; Dong et al., 2015 ), but this would also apply to new

nfluenza antivirals that target the entry phase of the infection

 Lin et al., 2017 ). These results are similar to previous modeling

esults using a seasonal influenza model ( Dobrovolny and Beau-

hemin, 2017 ). 

Not only is it important to examine how many drug-resistant

utants are present during an infection, but we are also interested

n understanding how quickly they can be detected. We expect the

irus levels in an infection to surpass detection levels (which we

xed at 10 [V] ( Dobrovolny and Beauchemin, 2017 )) quicker if the

utant virus were to be fitter than the wild-type virus. We studied

his by monitoring the times of detection ( t det ) as a function of βfit 

nd p fit , respectively. From Fig. 3 we observe that higher efficacies

esult in a suppression of the development of the infection, making

imes of detection become greater. In addition, when the efficacy

pproaches zero, the measured times of detection stop fluctuating

round their mean value. 

.2. Intermittent treatment of severe infections without cell 

egeneration 

It is customary to neglect cell regeneration in influenza mod-

ls since the infection is short compared to typical cell regenera-

ion times ( Crosby and Waters, 2010 ). Severe infections last longer,

ut as this might still be a valid assumption, we first apply in-

ermittent treatment to a model with � = 0 , as described in the

ethods. Examples of infection curves that result from different

hoices of the parameters that control the periodic switching be-

ween treatment phases are shown in Fig. 4 . For adamantanes, the

nitial drug treatment period keeps wild-type virus from growing,

ut fails to completely eliminate it, so that viral titer quickly in-

reases once treatment is turned off. At some point, the wild-type

irus produces a drug-resistant mutant which continues to thrive

nce treatment is resumed. For treatment with NAIs, we see a sim-

lar trend, although in this case, virus grows slowly even during an-

iviral treatment. In all cases, for both antivirals, treatment elimi-

ates wild-type virus and allows the mutant virus to thrive, result-

ng in a severe infection with a drug-resistant strain. Since there

s no cell regeneration in the model depicted, the wild-type virus

oes not have any cells left to infect in order to out-compete the

rug resistant virus whenever the treatment is paused. Therefore,

he intermittent treatment is not able to suppress the infection in

hese examples. 

.3. Intermittent treatment with cell regeneration 

Since cell regeneration appears to be crucial for the success of

ntermittent treatment, we vary � which controls the regeneration

f dead cells. Once cells die, new target cells are generated to take

heir place. For different choices of regeneration rates, we mon-

tored the total infection time (TIT), i.e. the total time the virus

opulation was larger than the symptomatic threshold of 10 4 [ V ]

iral particles ( Dobrovolny et al., 2010 ). If intermittent treatment

orks effectively, the total infection time for a treated infection

hould be shorter than the total infection time for an untreated in-

ection. An untreated infection using these parameters has a symp-
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Fig. 3. Shown in (a) is how likely an adamantane-based drug is to suppress an infection, for a varying ratio between the wild-type and mutant virus’ abilities to infect 

available target βfit for a variety of drug efficacies m wt . In (b) the suppressing behavior of an NAI-based drug for varied virus production rates in mutant and wild-type virus 

populations p fit is shown for different drug efficacies n wt . In (c), times of detection t det are plotted against changing values of βfit while an adamantane-based treatment is in 

effect. Similarly, in (d) the times of detection are evaluated for a given p fit , while an NAI-based drug is being applied. The shaded areas that surround measurements indicate 

the standard deviation over all realizations. 

Fig. 4. Shown are examples of how wild-type (circles) and mutant (diamonds) influenza virus populations develop stochastically under intermittent treatment in the absence 

of regeneration. In (a), (b) and (c) an adamantane is applied with an efficacy of m wt = 0 . 94 . Treatment in (d), (e) and (f) is NAI-based, with an efficacy of n wt = 0 . 92 . The 

switching of treatment is highlighted, in dark regions drugs are being applied, in light regions treatment is paused. From left to right, the switching period is changed 

gradually and t off is increased from 2 to 5 and up to 8 d while treatment durations are kept constant at t on = 5 d. 
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Fig. 5. Mean total infection times of a thousand ensembles for adamantane-based treatment (top row) and NAI-based treatments (bottom row). Periodic drug application 

was varied in terms of how long it was paused ( t off) and applied ( t on ). Regeneration rates increase from left to right. In (a) and (d) � = 160 −1 d 
−1 

, in (b) and (e) � = 40 −1 d 
−1 

, 

in (c) and (f) � = 20 −1 d 
−1 

. 
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tomatic duration of about 56 d. We examined a variety of pairings

of (t on , t off) , with both variables in the range 1–10 d. Example re-

sults are shown in Fig. 5 . Note that infections generally did not dip

below the threshold and rebound as treatment was turned on and

off since as the amount of one type of virus (wild-type or mu-

tant) decreased, the amount of the other would increase such that

the total amount of virus remained above the threshold until final

resolution of the infection. Thus the TIT is typically a continuous

period of time, although it takes, on average, about 1.5 d after the

start of the infection to reach the symptomatic threshold. 

When regeneration is included, there are many combinations

of (t on , t off) that will lead to shorter infections. As the regenera-

tion rate increases, total infection time shows a decreasing depen-

dence on t off, particularly for adamantanes, and total infection time

is largely a function of t on . If there is a sufficiently high regenera-

tion rate, then the wild-type virus has enough available target cells

to rise to levels higher than the mutant virus within a one day t off

and longer t off will not affect the final outcome. When regeneration

is low, levels of wild-type virus rise more slowly and if t off is too

short, wild-type virus will not rise to levels high enough to drive

down the levels of drug-resistant, so multiple on-off cycles might

be needed to eliminate the drug resistant virus. Thus for a partic-

ular t on , the total infection time will increase when t off is short. In

Fig. 5 (a) and (d), we see that there is a steep increase in the total

infection time at t off ∼ 7–8 d which indicates the t off long enough

to allow wild-type virus to surpass the drug resistant mutant dur-

ing the first treatment cycle. The shortest infections occur when

treatment periods are long. We also examined the fraction of drug
 o  
esistant mutants in the viral titer above the symptomatic thresh-

ld, finding that intermittent treatment was effective at reducing

he amount of drug resistant mutants in the viral titer. The model

redicts that the fraction of drug resistant mutants falls to below

% once t off is greater than 2 d. 

.4. Variability of infection times 

In order to capture in a single number the variability in total

nfection times as we vary treatment schemes, we look at how

trongly the average of the total infection time (for a fixed t on )

aries when we change the duration for which the drug is paused

 t off). From this motivation, we compute the unbiased estimator

f the variance, where we explicitly denote the remaining depen-

ence on t on , as that has not been averaged out: 

 

2 (t on ) = 

1 

N − 1 

∑ 

{ t off} 

[
TIT � (t on , t off) − TIT � (t on ) 

]2 
, 

here TIT � (t on , t off) is the TIT for a specific combination of

(t on , t off) , TIT � (t on ) is the mean TIT for a particular t on averaged

ver values of t off, and N is the number of different t off values ex-

mined. From these quantities we can estimate the coefficient of

ariation for a given regeneration rate � and t on : 

 v ,� (t on ) = 

√ 

s 2 (t on ) 

TIT � (t on ) 

The coefficient of variation provides us with a natural measure

f the amount of influence that the variation of t has. Thus, the
off
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Fig. 6. The coefficients of variation for different � are shown for adamantane (solid, 

circles) and NAI (dotted, diamonds). The higher the value of the coefficient of vari- 

ation, the more susceptible the virus population is to periodic applications of the 

drug. For small regeneration rates, intermittent treatment becomes effective and 

switching between treatment and no treatment induces changes in the total infec- 

tion time. 

l  

b  

o  

t  

e  

s  

t  

s  

b  

g  

a  

2  

t  

c  

c  

p  

w  

t  

o  

m  

r  

r  

o

4

 

c  

t  

o  

n  

a  

a  

i  

o  

w  

a  

t  

o  

t  

c  

d  

a  

t  

p

 

s  

a  

v  

i  

m  

t  

t  

g  

i  

h  

t  

a  

d  

q  

p  

a  

a  

t  

t  

t  

p  

d  

s  

p  

i  

c  

t  

v  

s  

i  

t

 

b  

e  

h  

H  

t  

W  

d  

(  

H  

a  

o  

h  

t  

b  

a  

e  

c  

v  

d  

2  

c  

p

 

e  

t  

s  

t  

i  
arger c v ,� (t on ) , the more susceptible we assume the infection to

e to variations in the periodic treatment scheme. When we are

nly interested in studying the coefficient of variation as a func-

ion of the regeneration rate, we can compute c v ,� by further av-

raging over all t on . If this quantity is large, then the system is

ensitive to the choice of t on and t off; if the parameter is small,

hen all choices of t on and t off will shorten the infection by the

ame amount. For both adamantanes and NAIs, we observe similar

ehavior of c v ,� as a function of regeneration rate ( Fig. 6 ). The re-

eneration rate of epithelial cells in the healthy lung is estimated

t 0.03 d −1 ( Beauchemin and Handel, 2011; Beers and Morrisey,

011 ), however, for the model, we are interested in the regenera-

ion rate of cells that can participate in the infection. Cells only be-

ome target cells when they have the surface receptors that virus

an use to bind to and enter the cell. Since surface receptors are a

roperty of terminally differentiated cells ( Crystal and West, 1991 ),

e do expect this regeneration rate to be lower than the cited es-

imate. This places human infection in the regime where choices

f t on and t off are significant. This means that the efficacy of treat-

ent will depend on the choice of t on and t off, with our simulation

esults suggesting that values of t off greater than 2 d will greatly

educe the amount of drug resistant virus and that longer values

f t off help reduce TIT. 

. Discussion 

By means of a combination of two mathematical models we

aptured the stochastic dynamics of severe influenza infections

hat can arise in hosts through an interaction between populations

f mutant and wild-type virus. When the infection is caused by a

ew strain of the virus often no vaccine exists, and drugs (such as

mantadine and neuraminidase inhibitors that were studied here)

re used to hinder the infection from spreading. We showed that

ntermittent treatment can be used successfully to aid the efficacy

f these drugs and help prevent the emergence of drug resistance

hen faced with long lasting instances of the infection. We looked

t the dependence of the total infection time on the two parame-

ers of intermittent treatment, t on and t off, and found that a range

f combinations of these parameters were effective in shortening

he duration of the infection. We proposed a simple measure to
apture the relative changes in the total infection time that are in-

uced by variations in the intermittent treatment parameters, the

veraged coefficient of variation. We found that c v ,� depends on

he regeneration rate of host cells, with slow regeneration being

articularly sensitive to the choice of t on and t off. 

Our findings suggest that intermittent treatment is a possible

trategy for shortening the duration of severe influenza infections

nd that it can substantially limit the amount of drug resistant

irus, although there are some practical difficulties in implement-

ng the protocol. There is the obvious issue of optimizing inter-

ittent treatment parameters, which may vary from patient to pa-

ient. Our study specifically shows that the combinations of t on and

 off that reduce the duration of the infection are altered by cell re-

eneration rates, which are known to change over time due to ag-

ng ( Paxson et al., 2011 ). There is also some error in the estimated

uman regeneration rate, since the only estimate we could find is

he average turnover rate for healthy epithelial cells ( Beauchemin

nd Handel, 2011; Beers and Morrisey, 2011 ). It is possible that

uring an infection this rate could be different. Additionally, the

uoted regeneration rate is based on the time for a new cell to ap-

ear; the cell receptors necessary for participation in the infection

re a feature of terminally differentiated cells and will lead to an

dditional lengthening of the time for regeneration. There is also

he problem of delaying the onset of treatment. Our implemen-

ation of the drug is equivalent to post-exposure prophylaxis, but

his will not be possible for most individuals. For a typical uncom-

licated infection that lasts about 7 days ( Beauchemin and Han-

el, 2011 ), it does not make sense to apply intermittent therapy

ince the infection duration is too short. In many cases, however,

hysicians can’t tell in the first few days of an infection whether

t is uncomplicated or will turn into a severe infection. The latter

ases are unlikely to be identified until 5–7 days into the infec-

ion, at which point intermittent therapy can be applied. This in-

estigation assumed treatment started at the onset of the infection,

o further investigation is needed to determine if delayed start of

ntermittent treatment will be as effective and whether optimal

reatment parameters are dependent on the time delay. 

Since our model suggests that intermittent treatment could be

eneficial for severe influenza, it should also be seriously consid-

red for chronic viral infections such as HIV or hepatitis. There

as been some clinical investigation of intermittent treatment for

IV ( Lundgren et al., 2008; Martinez-Picado et al., 2003 ) or of

reatment interruptions ( Fox et al., 2008 ; Serwanga et al., 2011 ;

alker, 2008 ) and modeling studies of drug resistance emergence

uring drug holidays (a single interruption of treatment) for HIV

 Luo et al., 2011 ). However, there are other differences between

IV and hepatitis and influenza. For example, both HIV and hep-

titis are thought to have reservoirs of infected cells, in the form

f latently infected cells for HIV ( Chun et al., 1997 ) and extra-

epatic replication sites for hepatitis ( Revie and Salahuddin, 2011 ),

hat can continue or re-initiate an infection that appears to have

een cleared. There is also evidence that in both HIV and hep-

titis infected cells can replicate ( Dahari et al., 2005; Maldarelli

t al., 2014 ), so our model assumption of only uninfected target

ells regenerating is violated. Intermittent treatment might allow

iral load to rise to levels that are easily transmissible for short

urations even if viral load is eventually controlled ( Hamlyn et al.,

012 ). Finally, intermittent treatment schedules are more compli-

ated than continuous treatment, possibly affecting patient com-

liance with the treatment regimen ( Guy et al., 2013 ). 

Our study found that there are some slight dynamical differ-

nces in the effect of the two antivirals. We observed that adaman-

anes generally shortened infections more than NAIs when t on was

hort, but that NAIs were more effective than adamantanes when

 on was long. A previous modeling study also noted differences

n the emergence of drug resistant mutants during a seasonal in-
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fection under treatment with the two antivirals ( Dobrovolny and

Beauchemin, 2017 ). These arise because adamantanes prevent in-

fection of the cell, blocking the infection cycle at its start, whereas

NAIs block release, allowing cells to become infected and possi-

bly creating a drug resistant mutant that is then unaffected by

the drug blocking viral release. This model of intermittent treat-

ment is an example of a non-linear switched system ( Liberzon and

Morse, 1999 ) where we have applied the switching function to

two different parameters for the modeling of two different antiviral

treatments. There are other systems in which switching can be ap-

plied to different parameters, such as parasite control ( Xiang et al.,

2014 ; Xiang et al., 2016 ) and microbial fermentation ( Hu et al.,

2016 ). Studies of these systems also suggest that control of the

systems is possible with switching on different parameters, al-

though the optimal switching parameters vary under different con-

trol schemes. Although there are slight differences in the dynamics,

the dependence of c v ,� on regeneration rate is strikingly similar for

both drugs, suggesting that the importance of regeneration in driv-

ing dynamics during intermittent treatment might be independent

of antiviral mechanism of action. 

The model used in this study has limitations. It does not in-

clude an explicit immune response, which plays a role in termi-

nating influenza infections ( Beauchemin and Handel, 2011; Dobro-

volny et al., 2013 ), and can help control the emergence of drug

resistance ( Canini et al., 2014; Dobrovolny and Beauchemin, 2017 ).

It is possible, then, that intermittent treatment would not be nec-

essary in immunocompetent patients, but would be more useful

in immunocompromised patients. Since the model parameters are

derived from infections in healthy adults ( Baccam et al., 2006 ), pa-

rameter values implicitly reflect the contribution of an immune

response. However, it would be informative to explicitly examine

the role of different immune components in controlling the emer-

gence of drug resistant mutants. Our model also assumes exponen-

tial transitions between cell states which is known to be biologi-

cally unrealistic ( Beauchemin et al., 2017; Holder and Beauchemin,

2011; Kakizoe et al., 2015 ), although the effect of this assumption

is most strongly observed in single cycle experiments, and not in

multiple cycle infections such as the ones studied here ( Holder and

Beauchemin, 2011 ). We limited this study to a specific value of mu-

tant fitness. In reality, drug-resistance mutations in different back-

grounds, or drug-resistance mutations at different sites, will result

in different mutant fitness ( Butler et al., 2014; Holder and Beau-

chemin, 2011; Paradis et al., 2015; Pinilla et al., 2012 ). Additionally,

mutant fitness could evolve ( Kryazhimskiy et al., 2011; 2009 ) as

other mutations accumulate ( Bloom et al., 2010; Govorkova et al.,

2010 ). This means that different strains of influenza will respond

differently to intermittent treatment with the response possibly

changing over the course of the infection. While this could be

captured by varying the relative fitness parameter of the model,

this study was limited to examining the role of cell regenera-

tion. We also used a specific value of the mutation rate, although

estimates of the mutation rate vary ( Nobusawa and Sato, 2006 ;

Sanjuan et al., 2010 ). Mutation rate, like fitness of the virus, is a

model parameter that should be explored in more detail, but is

not the focus of this paper. A slower mutation rate will make it

less likely for mutants to emerge, but once they have emerged, the

number of mutants is driven by their replication rate rather than

by the mutation rate. This means that the mutation rate is unlikely

to affect the efficacy of intermittent treatment. These shortcomings

should not, however, affect our findings on the im portance of cell

regeneration in enabling intermittent treatment. 

The model predictions presented here suggest that intermittent

treatment deserves further investigation, though possibly not ap-

plication to patients or clinical trials at this point. Not all of the

parameters of the model have been investigated yet, relative fit-

ness of the mutant virus being a particularly important parameter.
dditionally, the model has not been parameterized or validated

ith human data, which is an important step in building confi-

ence in the model predictions. We are also limited by a lack of

nowledge of some of the important parameters. For example, vi-

al fitness is still ill-defined and difficult to measure ( Wargo and

urath, 2012 ; Wu et al., 2006 ), making it difficult to decide which

trains of influenza should be considered for intermittent treat-

ent. While cell regeneration rate was shown to vary with age

 Paxson et al., 2011 ), the study was done in mice, and similar stud-

es have not been done in humans, so we don’t know the range

f possible cell regeneration rates in humans. Thus, it is not clear

hether the variation in regeneration rate will limit who can be

onsidered for treatment. 
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