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Many mathematical models of respiratory viral infections do not include regeneration of cells

within the respiratory tract, arguing that the infection is resolved before there is significant cellular

regeneration. However, recent studies have found that �40% of patients hospitalized with

influenza-like illness are infected with at least two different viruses, which could potentially lead to

longer-lasting infections. In these longer infections, cell regeneration might affect the infection

dynamics, in particular, allowing for the possibility of chronic coinfections. Several mathematical

models have been used to describe cell regeneration in infection models, though the effect of model

choice on the predicted time course of viral coinfections is not clear. We investigate four mathe-

matical models incorporating different mechanisms of cell regeneration during respiratory viral

coinfection to determine the effect of cell regeneration on infection dynamics. We perform linear

stability analysis for each of the models and find the steady states analytically. The analysis sug-

gests that chronic illness is possible but only with one viral species; chronic coexistence of two dif-

ferent viral species is not possible with the regeneration models considered here. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4985276]

Respiratory virus infections are a leading cause of mortal-

ity worldwide. Studies have found that �40% of patients

hospitalized with influenza-like illness are infected with

more than one virus, sometimes leading to longer duration

of hospitalization and higher probability of admission to

the intensive care unit compared to single viral infection.

Mathematical models have been used to examine respira-

tory viral infection dynamics; however, many of them do

not include regeneration of cells within the respiratory

tract since the time course of these infections is shorter

than any significant cellular regeneration. For longer infec-

tions, however, cell regeneration might influence the infec-

tion dynamics. We investigate four mathematical models

incorporating cell regeneration during respiratory viral

coinfection to determine the effect of cell regeneration on

infection dynamics. By performing stability analysis of the

models, our investigation suggests that cell regeneration

can lead to chronic disease but with only one viral species.

I. INTRODUCTION

Respiratory diseases are the third leading cause of death

in the world.1 One of the major causes for these diseases is

viral infections of the respiratory tract. These infections can

be severe enough to cause chronic diseases such as asthma,

pneumonia or bronchiolitis especially in immunocompro-

mised patients like the elderly and children.2–4 With the

recent development of molecular biology techniques such as

multiplex polymerase chain reaction, not only a larger num-

ber of viruses have been detected but also more than one

virus has been detected in the same respiratory specimen.5,6

Infections with multiple respiratory viruses in the same

patient have now been reported in many studies.7–23 Several

investigations reported that respiratory tract infections with

more than one virus are found in 70% (Ref. 7) of the hospi-

talized patients who are suffering from severe bronchiolitis,

although other studies show that the prevalence rates may be

lower, varying from 15% to 39%.7,19,24 The resistive ability

of the host to the viruses depends on the nature of the partici-

pating viruses and is significantly different in single and mul-

tiple respiratory viral infection.19

Many of the viruses responsible for respiratory infec-

tions co-circulate around the same time of the year, mainly

during winter months, and target the epithelial cells in the

respiratory tract.10 They share not only the same epidemic

season but also the same replication site,20 making it possi-

ble to simultaneously infect the same host. Under these cir-

cumstances, the growth of one virus can affect that of other

viruses in some way.25,26 The clinical impacts of coinfec-

tion in patients are not clear and need to be better under-

stood. There is evidence that disease severity due to

coinfection is as severe,12,13,15 less severe,11,12 or more

severe8,9 than single virus infections. Detailed studies of

the time course of these infections have not yet been done

even though understanding the dynamics of coinfection is

important, as treating one infection might affect the other

infection during coinfection.

The use of mathematical modeling as a tool to study many

areas of the sciences is growing. Models are essential for finding

answers where laboratory experiments are impossible, impracti-

cal, or expensive. They also make it possible to identify the most

important processes that govern behavior of a biological system.

In viral disease modeling, models are used as quantitative tools

to explain biological mechanisms that cause changes in the viral

load during viral infections and have contributed significantly to

the understanding of viral dynamics.27 Mathematical modeling

of viral dynamics for human immunodeficiency virus (HIV),28,29

hepatitis B virus (HBV),30,31 hepatitis C virus (HCV),32 anda)Electronic mail: h.dobrovolny@tcu.edu
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influenza33,34 infections have played a role in disease control and

drug treatment strategies.

Our previous work35 was the first to investigate infection

dynamics of two viruses in the human respiratory tract. We

found that the faster growing virus would suppress growth of

the other virus during a coinfection. The basic coinfection

model predicted that typical respiratory coinfections would

last between 6 and 10 days, which is not any longer than the

typical duration of single virus infections. Part of the reason

for this result is that cell regeneration was not included in the

model, so once the initial target cell population was depleted,

the infection resolved. The lack of cell regeneration also pre-

cludes the possibility of chronic coinfections. Unfortunately,

some studies have noted that days of hospital stay are longer

for patients who are infected by more than one virus than

those of single virus infected patients.19,21 In order to more

accurately model these longer-lasting infections, we extend

the coinfection model to include cell regeneration.

Epithelial cells are regenerated normally in the body

according to homeostatic mechanisms. Though some epithelial

cells show a high rate of constant cell regeneration, respiratory

tract epithelial cells regenerate slowly during normal adult

homeostasis.36 Once infected, however, these epithelial cells

have the ability to regenerate new cells rapidly.37 An infection

in the respiratory tract may cause a decline in cell counts as

these infections are responsible for cell damage. During viral

infections, the respiratory system can initiate self renewal of

epithelial cells in the lung by stimulating not only progenitor

cells near dead cells but also through cell replacement by prolif-

eration of the remaining undamaged cells.38 Investigations that

incorporate cell regeneration into the model are mostly used for

long-lasting diseases such as HIV39,40 or HCV,41,42 but regener-

ation is typically neglected for respiratory infections since initi-

ation of epithelial cell regeneration time is long compared to

the duration of the viral infection.43 Since coinfections can last

longer than single infections,21 however, cell regeneration

might play an important role in the dynamics of coinfections.

In this study, we extend our previous model and analyze a

more biologically realistic mathematical model of coinfection

that incorporates cell regeneration of the host compared to the

basic model from our previous work.35 Here, we examine four

different models for cell regeneration and compare the pre-

dicted outcomes by presenting stability analysis. We calculate

the infection-free equilibrium and boundary equilibria, which

are chronic infections with only a single virus, along with the

basic reproductive numbers. We also determine stability crite-

ria for the infection-free equilibrium and boundary equilibria.

Finally, computer simulations are presented to support the ana-

lytical results from the stability analysis. Our results show that

the addition of cell regeneration allows chronic infections,

although with only a single virus; chronic coinfections are not

possible even with more resources for the viruses.

II. METHODS

A. Basic model

We extend the simple compartmental ordinary differen-

tial equation model for coinfection which we proposed in

previous work35

_T ¼ �b1TV1 � b2TV2;

_E1 ¼ b1TV1 � k1E1;

_E2 ¼ b2TV2 � k2E2;

_I1 ¼ k1E1 � d1I1;

_I2 ¼ k2E2 � d2I2;

_D1 ¼ d1I1;

_D2 ¼ d2I2;

_V1 ¼ p1I1 � c1V1;

_V2 ¼ p2I2 � c2V2:

In this model (Fig. 1), infection is initiated by two

viruses, V1 and V2, by infecting the available target cells

(susceptible cells), T, at corresponding infection rates of the

two viruses b1 and b2. Here, each cell is infected by only one

type of virus. Once infected, cells enter an eclipse phase, E1

or E2, where these newly infected cells are involved in the

intracellular process of viral replication before actually pro-

ducing virus particles. After average transition times 1
k1

and
1
k2

, the cells become productively infectious cells, I1 and I2,

which produce viruses at rates p1 and p2. Thus, successive

cycles of cell infections quickly result in an exponential

growth of viruses of both kinds, V1 and V2. Virus replication

continues over the life span of these infected cells, respec-

tively, 1
d1

and 1
d2

, after which the infectious cells die and are

FIG. 1. Compartmental model diagram of coinfection by two viruses. The

viruses, V1 and V2, infect the same type of target cell population, T, but do

not infect the same cell. Then, they enter into eclipse phases, E1 and E2,

where they take time of 1
k1

and 1
k2

before they go into the actively producing

viral phases of I1 and I2, where they produce viruses at rates of p1 and p2.

The newly produced viruses go on to infect other target cells. Free viruses

are cleared at clearance rates of c1 and c2. Infected cells die at rates of 1
d1

and
1
d2

and are counted as dead cells, D1 and D2.
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counted as dead cells, D1 and D2. Some of the newly pro-

duced free viruses get cleared at rates c1 or c2. Model param-

eters and variables are defined in Table I. In this basic

model, cell regeneration is not considered because epithelial

cells regenerate in 5–7 days and might take up to one month

to completely grow33,37 while uncomplicated viral infections

are short compared to the time it takes for cells to regenerate

in the respiratory tract.

We also ignore several other factors to simplify the bio-

logical complexity of the real system, avoiding estimation of

the values of the extra parameters which would be necessary

to explain those factors. For example, the immune response

is not considered in this model since little quantitative infor-

mation is available about the interaction between host’s

immune response and respiratory infectious viruses.

Although there have been some attempts to incorporate the

immune response into mathematical models of infection, for

acute infections, experimental immune data are often too

sparse to build accurate models.44 Here, two different viruses

infect the same type of target cells but not the same cell

simultaneously which will not necessarily always be the

case.45–47 Finally, exponential distributions for eclipse and

infectious transition times are considered to simplify the

computation even though it is known to be biologically unre-

alistic (a cell is not able to produce virus as soon as it is

infected).48,49

B. Different regeneration models

Since the results from our previous work35 seem to

depend on the fact that the viruses are competing for a lim-

ited cell population, the model is expanded here to include

cell regeneration in different forms. Regeneration of

epithelial cells in the respiratory tract can be modeled in sev-

eral ways. Here, we examine four different ways to model

cell regeneration in the human respiratory tract.

1. Model 1: Constant growth

Constant growth rate has been considered in many stud-

ies39,40,50,51 to model population growth. In this model, we

assume that the target cell population are produced at a con-

stant rate, r, in the human respiratory tract, modeling the sce-

nario that cells are produced from sources within the living

organism of the host to maintain homeostasis. This creates

an unlimited supply of cells for the two viruses to promote

infection. Keeping all other system variables the same as

that of the basic model, the target cell equation now becomes

_T ¼ �b1TV1 � b2TV2 þ r:

This is the simplest way one can model cell regeneration.

2. Model 2: Target cell replication

Model 2 refers to cell growth that is proportional to the

available target cells in the respiratory tract. Here, new cells

are a result of reproduction of the available target cells. This

type of regeneration model has been used previously to

model influenza infection dynamics.52 Keeping all other sys-

tem variables the same as that of the basic model, the target

cell equation becomes

_T ¼ �b1TV1 � b2TV2 þ rT:

3. Model 3: Replacement of dead cells

Model 3 considers cell regeneration in the form of cell

growth proportional to dead cells. There is evidence that cell

destruction stimulates target cell reproduction,37 so that when

there is more cell death, the remaining target cells will repro-

duce at a faster rate. Handel et al. and Bauer et al. used this

type of regeneration in their models of influenza virus.53,54

Keeping all other system variables the same as that of the

basic model, the target cell and dead cell equations become

_T ¼ �b1TV1 � b2TV2 þ rðD1 þ D2Þ;
_D1 ¼ d1I1 � rD1;

_D2 ¼ d2I2 � rD2:

4. Model 4: Logistic growth

Logistic growth is another popular way to incorporate

cell regeneration into mathematical models.42,50,51,55–57 The

logistic function gives a density dependent growth rate

which causes cell regeneration to slow down when target

cell counts get high. In this model, we assume logistic

growth of target cells with a carrying capacity of 1. So keep-

ing all other system variables the same as that of the basic

model, the target cell equation becomes

_T ¼ �b1TV1 � b2TV2 þ rTð1� T � E1 � I1 � E2 � I2Þ:

TABLE I. Definition of model variables and parameters.

Variable Definition Units

T Number of uninfected target cells Relative cell counts

E Number of cells in eclipse phase Relative cell counts

I Number of infectious cells Relative cell counts

D Number of dead cells Relative cell counts

V Infectious viral titer PFU/ml

Parameter Definition IAVa RSVa Units

T0 Initial target cells 1.0 1.0 Relative

cell counts

V0 Initial viral titer 1.0 1.0 PFU/ml

b Viral infection rate 82.73 �10�7 0.03 (PFU/ml)�1 day�1

k Transition rate

from E to I
4.20 1.27 day

d Death rate of infectious

cells

4.20 1.27 day

p Viral production rate 0.12 �109 76.45 �102 (PFU/ml) day�1

c Viral clearance rate 4.03 1.27 day–1

r Target cell

regeneration rate

0.03b 0.03b day–1

R0 Basic reproduction

number

58.6 142.19

a.Parameter values are taken from Ref. 35.
bParameter value from Refs. 33 and 37.
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C. Computer simulation

For numerical simulations, we consider influenza A virus

(IAV) and respiratory syncytial virus (RSV) coinfection in the

human respiratory tract, with parameter values for both

viruses taken from fits to experimental data as detailed in Fig.

3 of our previous work.35 For both viruses, the data consist of

viral load only, so the units of cell measurements are unspeci-

fied. We assume the initial number of target cells is 1, so the

units of the remaining cell variables are in cell counts relative

to the initial number of target cells. Viral units are determined

by the experimental data and are in plaque forming units

(PFU) per milliliter. The values are also given in Table I.

Simulations are implemented using the lsode function in

Octave 3.6.4 to solve the system of differential equations.

III. RESULTS

Our primary interest is in investigating whether the addi-

tion of cell regeneration will allow for the existence of

chronic coinfection. Thus, when we determine the steady

states of each of the models, we are looking for steady states

where both V1 and V2 are non-zero. The existence of this

steady state is not enough, however, to conclude that chronic

coinfections might be observed in patients since unstable

steady states are not likely to be observed in practice. We

also need to examine the stability of the chronic coinfection

to determine whether there are parameter values for which

chronic coinfection is a stable steady state.

A. Stability analysis of the basic model

We first examine the possible dynamics of the coinfec-

tion model without cell regeneration. Let Q ¼ ðT�;V�1 ;
V�2 ;E

�
1;E

�
2; I
�
1; I
�
2;D

�
1;D

�
2Þ be the non-negative steady state

solution of the model. The steady states of this model give

one infection free equilibrium, showing no coexistence of

two viral infections.

1. Infection free steady state

Q0T ¼ ðT� ¼ T; V�1 ¼ 0; V�2 ¼ 0; E�1 ¼ 0; E�2 ¼ 0;

I�1 ¼ 0; I�2 ¼ 0Þ:

This model has a one-parameter family (parameterized

by the non-negative values of T) of steady states. Since there

are no viruses of either type (V�1 ¼ 0 and V�2 ¼ 0), the steady

states are considered infection free states. If virus is inocu-

lated into the healthy cells (target cells), the system will

approach one of these steady states depending on the param-

eter values and initial conditions of the system variables.

a. Eigenvalues. Linearising the model near the equilib-

rium, the eigenvalues of these steady states, Q0T , are

• k1¼ 0
• k2¼ 0
• k3¼ 0
• k4;5;6¼Roots of the function F1ðkÞ and
• k7;8;9¼Roots of the function F2ðkÞ

where FiðkÞ is given by

FiðkÞ ¼ k3 þ k2ðci þ di þ kiÞ þ kðcidi þ diki þ cikiÞ
þðcidiki � bipikiTÞ;

with i¼ 1, 2.

Using the Routh-Hurwitz criterion of stability, we obtain

the following necessary conditions for local asymptotic sta-

bility of this state. As the constant coefficients ðci þ di þ kiÞ
and ðcidi þ diki þ cikiÞ are always positive, the non-trivial

conditions are as follows:

ðcidiki � bipikiTÞ > 0

ðci þ di þ kiÞðcidi þ diki þ cikiÞ > ðcidiki � bipikiTÞ:

The first condition can be re-written in terms of the basic

reproductive number for single virus infection, R0i ¼ bipiT
cidi

,

giving the condition that R0i < 1. This first condition states

the stability of a single virus infection if satisfied. The sec-

ond condition can also be re-written in this way giving a

lower bound

R0i > 1� ci þ di þ kið Þ 1

ci
þ 1

di
þ 1

ki

� �
:

The eigenvalue k1 ¼ 0 is the eigenvalue for the eigen-

vector that lies along the target cell axis in the phase space

of the model, which means that there is no growth or decay

of small perturbations along this axis. Since all values of T
are possible fixed points, the system shows no preference for

a particular value of T.

Eigenvalues given by the functions F1ðkÞ and F2ðkÞ
determine viral infection due to a particular virus. For exam-

ple, if the roots of F1ðkÞ are positive, then an initial inoculum

of virus V1 will grow and an acute infection will occur. If the

roots of F1ðkÞ are negative, then an initial inoculum of virus

V1 decays with time and there will not be an infection.

Infection dynamics due to the second virus, V2, are deter-

mined by the roots of F2ðkÞ in the same manner. It is note-

worthy that chronic infection as well as chronic coinfection

is not possible with either of the viruses in the absence of

cell regeneration. We could, however, see acute infections

with either virus or an acute coinfection if the roots of both

F1ðkÞ and F2ðkÞ are positive.

In the case of an acute infection, the system will end up

in the trivial steady state where T¼ 0. While this seems bio-

logically unrealistic, such target-cell limited models are

commonly used to model within host infections.33,58 In

reality, the trivial steady state corresponds to death of all

target cells, but not all cells in the respiratory tract are tar-

get cells for infectious viruses. Respiratory viruses show a

preference for certain cell types within the respiratory tract

determined by the cell surface receptors to which they

bind.46,59,60 There are also some target cells that will be

protected by the immune response as the infection pro-

gresses44,61 (not explicitly included in our model) and will

remain at the end of the infection. Finally, there is evidence

that respiratory infections do cause massive cell death in

the respiratory tract,62–64 but most patients recover from
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this. For these reasons, the trivial steady state is biologi-

cally plausible.

b. Basic reproductive number. Overall growth of the coin-

fection is determined by the value of the basic reproductive

number, R0, of the model. R0 can be found from the spectral

radius (largest eigenvalue) of the next generation matrix, i.e.,

ðFV�1Þ, where F is the transmission matrix and V is the tran-

sition matrix supplied by the system of equations.65 A

detailed calculation is shown in the appendix. R0 for this

model is given by

R0 ¼ maxðR01;R02Þ;

where R01 is the basic reproductive number for the first virus,

V1, and R02 is that for the second virus, V2. A threshold con-

dition for the growth of infection is given by R0 ¼ 1. So if

the value of R0 is greater than 1, the corresponding steady

state is unbounded, which means growth of infection with

either of the two viruses in the respiratory tract. If R0 is less

than 1 or R01 and R02 are individually less than 1, there will

be no growth of infection due to either of the viruses. Thus,

the infection free steady state, Q0T , is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1.

2. Infection free steady state when T �50

Q0 ¼ ðT� ¼ 0; V�1 ¼ 0; V�2 ¼ 0; E�1 ¼ 0; E�2 ¼ 0;

I�1 ¼ 0; I�2 ¼ 0Þ:

a. Eigenvalues. This trivial steady state is an infection

free equilibrium where all the state variables are zero. This

steady state arises after an acute illness as both of the viruses

become zero after consuming all the susceptible target cells

within the host.

Linearizing the system of equations near the state, Q0,

the eigenvalues are

k1 ¼ 0;

k2 ¼ 0;

k3 ¼ 0;

k4 ¼ �c1;

k5 ¼ �c2;

k6 ¼ �d1;

k7 ¼ �d2;

k8 ¼ �k1;

k9 ¼ �k2:

This steady state is globally stable since all the eigenval-

ues are negative or zero. If the other steady state (T� ¼ T) is

not stable, the system ends up in this equilibrium.

An example of the dynamics of coinfection without

regeneration is shown in Fig. 2 for influenza A virus (IAV)

and respiratory syncytial virus (RSV). The replication of one

virus (RSV) is reduced, as compared to RSV single infec-

tion, by the presence of the other virus (IAV), while replica-

tion of the other virus (IAV) is largely unaffected. In this

case, the infection resolves itself due to the consumption of

all target cells, leaving the two viruses without new cells to

infect. Here, the values of R01 and R02 corresponding to IAV

and RSV, respectively, are found to be R01¼ 58.65 and

R02¼ 142.19.

B. Stability analysis of cell regeneration models

Models incorporating cell regeneration into the disease

dynamics give several possible steady state solutions: trivial

equilibrium where all the variables become zero, Q0; infec-

tion free equilibrium, Q0T where all the variables go to zero

except target cells, T; and two boundary equilibria. In this

paper, the term boundary equilibrium refers to a chronic sin-

gle viral infection where either only the first virus, V1, exists

(V2 free state), Q1, or where only the second virus, V2, exists

(V1 free state), Q2. Interestingly, we find no steady state with

co-existence of two viruses. In Sec. II B 1–II B 4, the steady

states of the four models incorporating cell regeneration are

presented along with their respective eigenvalues and stabil-

ity conditions.

1. Model 1: Constant growth

For this model, an unlimited supply of target cells is

included by adding a constant rate of cell birth, r, to the

equation of target cells, T. Note that we have not included

dead cells in the stability analysis of this model since they do

not play a role in the dynamics of the infection. This model

results in chronic infection with only one of the viruses, so

there are two possible steady states.

a. Chronic infection states. There are two boundary equi-

libria where only one of the viruses will turn into a chronic

infection,

Q1 ¼ ðT�;V�1 ;V�2 ¼ 0;E�1;E
�
2 ¼ 0; I�1; I

�
2 ¼ 0Þ;

Q2 ¼ ðT�;V�1 ¼ 0;V�2 ;E
�
1 ¼ 0;E�2; I

�
1 ¼ 0; I�2Þ;

FIG. 2. Coinfection time course of RSV and influenza A virus for the basic

model (no cell regeneration) with single infection in dotted line.
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where

T� ¼ cidi

pibi

; V�i ¼
pir

cidi
;

E�i ¼
r

ki
; I�i ¼

r

di
;

for i¼ 1, 2. As the constant parameters are positive, these

equilibria exist and are biologically realistic.

Eigenvalues: The first three eigenvalues are given by

the roots of the characteristic equation that consists of the

functions, PijðkÞ and RiðkÞ. The function PijðkÞ is given by

the equation

Pij kð Þ ¼ 1

bicidipi
k3 þ k2Aþ kBþ Cð Þ;

where i; j ¼ 1; 2 and

A ¼ bicicjdipi þ bicididjpi þ bicidikjpi;

B ¼ b2
i c2

i cjd
2
i djp

2
i þ b2

i c2
i cjd

2
i kjp

2
i þ b2

i c2
i d

2
i djkjp

2
i ;

C ¼ b2
i c4

i cjd
4
i djkjp

2
i ðR0i � R0jÞ:

The remaining four eigenvalues are given by the roots

of the function, RiðkÞ which is given by the equation

Ri kð Þ ¼ 1

bicidipi
k4 þ k3Dþ k2Eþ kFþ Gð Þ;

where i¼ 1, 2 and

D ¼ bic
2
i dipi þ bicid

2
i pi þ bicidikipi þ b2

i rp2
i ;

E ¼ b2
i c3

i d
3
i p2

i þ b2
i c3

i d
2
i kip

2
i þ b2

i c2
i d

3
i k1p2

i þ b3
i c2

i d1rp3
1

þb3
i cid

2
i cp3

i þ b3
i cidikirp3

i ;

F ¼ b4
i c3

i d
3
i cp4

i þ b4
i c3

i d
2
i kirp4

i þ b4
i c2

i d
3
i kirp4

i ;

G ¼ b5
i c4

i d
4
i kirp5

i :

Using the Routh-Hurwitz stability criterion, Since A, B,

D, E, F, and G are always positive, the only condition

derived from the Routh-Hurwitz stability criterion that is not

automatically satisfied for the first steady state, Q1, is

b1c2d2p1

b2c1d1p2

> 0;

R01

R02

> 0:

Also for the second steady state, Q2, is

b2c1d1p2

b1c2d2p1

> 0;

R02

R01

> 0:

The system will end in a chronic infection with V1 if the

basic reproductive number for V1, R01, is larger than the

basic reproductive number for V2, R02, or it will end in a

chronic infection with V2 if the basic reproductive number

for V2 is larger than the basic reproductive number for V1.

2. Model 2: Target cell replication

In this model, cell growth is implemented as propor-

tional to the availability of susceptible target cells, T. This

model has only one steady state.

a. Infection free steady state. The steady state is the trivial

infection free state, similar to that of the basic model

Q0 ¼ ðT� ¼ 0; V�1 ¼ 0; V�2 ¼ 0; E�1 ¼ 0; E�2 ¼ 0;

I�1 ¼ 0; I�2 ¼ 0Þ:

Here, again target cells go to zero signifying an acute illness

that ends up consuming all the available susceptible target

cells during the coinfection.

Eigenvalues: The eigenvalues of this steady state are

k1 ¼ 0;

k2 ¼ 0;

k3 ¼ �c1;

k4 ¼ �c2;

k5 ¼ �d1;

k6 ¼ �d2;

k7 ¼ �k1;

k8 ¼ �k2;

k9 ¼ r:

This trivial steady state is unstable as one of the eigenval-

ues is positive which is in contrast with the basic model with

no cell regeneration where we found stable acute infection.

The instability can be explained by the term rT which pro-

vides the single positive eigenvalue (k9). This causes cells to

re-grow without bound, which is uninteresting in the absence

of virus, but when virus is present, this can lead to an oscilla-

tory response with cycles of acute infections. Introduction of a

small amount of virus will lead to an acute infection which

consumes almost all the available target cells. The few

remaining target cells will start to regenerate the epithelium

while virus is slowly cleared. If the clearance rate of virus is

slower than the regeneration rate of target cells, there will be a

fresh supply of target cells before all the virus is cleared from

the system. This can then start another acute infection.

3. Model 3: Replacement of dead cells

This model considers cell regrowth stimulated by cell

death in the respiratory tract. Here, three equilibria are found

including the infection free equilibrium, Q0T and boundary

equilibria, Q1 and Q2.

a. Infection free steady state. The first possible steady

state is the infection free state where target cells, T, can have

any value
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Q0T ¼ ðT� ¼ T; V�1 ¼ 0; V�2 ¼ 0; E�1 ¼ 0;

E�2 ¼ 0; I�1 ¼ 0; I�2 ¼ 0; D�1 ¼ 0; D�2 ¼ 0Þ:

Eigenvalues: Eigenvalues for this steady state are

• k1¼ 0
• k2¼�r
• k3¼�r
• k4;5;6¼Roots of the function F1ðkÞ and
• k7;8;9¼Roots of the function F2ðkÞ

The function FiðkÞ is given by

FiðkÞ ¼ k3 þ k2ðci þ di þ kiÞ þ kðcidi þ diki þ cikiÞ
þðcidiki � bipikiTÞ;

with i¼ 1, 2.

Using the Routh-Hurwitz criterion, we obtain the fol-

lowing conditions for the local asymptotic stability of this

state

ðcidiki � bipikiTÞ > 0;

R0i < 1;

and

ðci þ di þ kiÞðcidi þ diki þ cikiÞ > ðcidiki � bipikiTÞ;

R0i > 1� ci þ di þ kið Þ 1

ci
þ 1

di
þ 1

ki

� �
:

The eigenvalues and stability criteria for this state are identi-

cal to those of the infection free state of the basic model with

no cell regeneration.

Basic reproductive number: The associated R0 for this

steady state is given by the equation

R0 ¼ maxðR01;R02Þ;

where

R0i ¼
bipiT

cidi
;

for i¼ 1, 2.

The basic reproductive number is also found to be iden-

tical to that of no cell regeneration model.

b. Chronic infection states. This model also has two pos-

sible chronic infection states

Q1 ¼ ðT�;V�1 ;V�2 ¼ 0;E�1;E
�
2 ¼ 0; I�1; I

�
2 ¼ 0;D�1;D

�
2 ¼ 0Þ;

Q2 ¼ ðT�;V�1 ¼ 0;V�2 ;E
�
1 ¼ 0;E�2; I

�
1 ¼ 0; I�2;D

�
1 ¼ 0;D�2Þ;

where

T� ¼ cidi

pibi

; E�i ¼
cidiV

�
i

kipi
;

I�i ¼
ciV
�
i

pi
; D�i ¼

cidiV
�
i

rpi
;

with i¼ 1, 2.

Eigenvalues: Eigenvalues of these steady states are

• k1¼ 0
• k2¼ 0
• k3;4;5¼Roots of the function PijðkÞ and
• k6;7;8;9¼Roots of the function RiðkÞ.

Here, PijðkÞ is given by

Pij kð Þ ¼ 1

bipi
k3 þ k2Aþ kBþ Cð Þ;

where i; j ¼ 1; 2 and

A ¼ bicjpi þ bidjpi þ bikjpi;

B ¼ b2
i cjdjp

2
i þ b2

i cjkjp
2
i þ b2

i djkjp
2
i ;

C ¼ b2
i p2

i kjcjdjcidiðR0i � R0jÞ:

RiðkÞ is given by

Ri kð Þ ¼ 1

bipi
k4 þ k3Dþ k2Eþ kFþ Gð Þ;

where

D ¼ bipiðci þ di þ ki � rÞ þ b2
i piV

�
i ;

E ¼ b2
i p2

i fðcidi þ diki þ kiciÞ � rðci þ di þ kiÞg
þb3

i cip
2
i V�i þ b3

i dip
2
i V�i þ b3

i kip
2
i V�i ;

F ¼ b3
i p3

i fbiV
�
i ðcidi þ diki þ kiciÞ � rðcidi þ diki þ kiciÞg;

G ¼ b5
i cidikip

4
i V�i :

The conditions for local asymptotic stability of this state

are determined by the inequalities

ci þ di þ ki > r;

cidi þ diki þ kici

ci þ di þ ki
> r;

biV
�
i > r:

The first criterion states that the boundary state is stable

if the sum of transition rate from eclipse phase (ki), viral

decay rate (ci), and infected cell death rate (di) is greater than

the regeneration rate. The quantities on the left all describe

processes within the viral lifecycle, so this condition sug-

gests that the replication process must be faster than cell

regeneration. Additionally, the third condition states that the

rate of cell regeneration has to be smaller than the rate of

new infections (biV
�
i ) by the virus, Vi, to maintain the

chronic infection with Vi.

4. Model 4: Logistic growth

When the model assumes a logistic growth function, we

find two kinds of infection free steady states.

a. Infection free steady state. The infection free steady

state is where other variables remain zero and the target cells

are equal to the initial value of T0 ¼ 1. This suggests two
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possible scenarios. The first is that there was no infection by

either of the viruses. A second option is that there was an

acute infection leading to destruction of all cells, followed

by the re-growth of all cells

Q01 ¼ ðT� ¼ 1; V�1 ¼ 0; V�2 ¼ 0; E�1 ¼ 0; E�2 ¼ 0;

I�1 ¼ 0; I�2 ¼ 0Þ:

Eigenvalues: Eigenvalues of this steady state are

• k1¼ 0
• k2¼ 0
• k3¼�r
• k4;5;6¼Roots of the function F1ðkÞ and
• k7;8;9¼Roots of the function F2ðkÞ.

The function F1ðkÞ and F2ðkÞ are given by the equation

FiðkÞ ¼ k3 þ k2ðci þ di þ kiÞ þ kðcidi þ diki þ cikiÞ
þðcidiki � bipikiÞ;

where i¼ 1, 2.

Using the Routh-Hurwitz criterion, we obtain the fol-

lowing conditions for the local asymptotic stability of this

state. As ðci þ di þ kiÞ and ðcidi þ diki þ cikiÞ are always

positive, the non-trivial conditions are

R0i < 0;

R0i > 1� ci þ di þ kið Þ 1

ci
þ 1

di
þ 1

ki

� �
;

where i¼ 1, 2. The eigenvalues and stability criteria for this

state are identical to those of the infection free steady states

of the basic model with no cell regeneration except that the

number of target cells will always return to the maximum

value.

Basic reproductive number: The associated R0 for this

steady state is given by the equation

R0 ¼ R01 þ R02 � R01R02;

as seen for other infection free equilibria.

b. Infection free steady state when T� ¼ 0. The trivial

infection free steady state is

Q0 ¼ ðT� ¼ 0; V�1 ¼ 0; V�2 ¼ 0; E�1 ¼ 0; E�2 ¼ 0;

I�1 ¼ 0; I�2 ¼ 0Þ:

Eigenvalues: The eigenvalues are

k1 ¼ 0;

k2 ¼ 0;

k3 ¼ �c1;

k4 ¼ �c2;

k5 ¼ �d1;

k6 ¼ �d2;

k7 ¼ �k1;

k8 ¼ �k2;

k9 ¼ r:

Again, the eigenvalues for this state are identical to those of

the infection free steady state (T� ¼ 0) of model 2. This trivial

steady state is unstable as one of the eigenvalues is positive.

We see that implementation of different types of cell

regeneration leads to different dynamics. Our results are

summarized in Table II. While two of the regeneration mod-

els investigated here allow chronic infections to develop,

none of the models allow for chronic coinfections.

C. Application to RSV and influenza A virus

In this section, we present numerical simulations of the

viral coinfection time course for each of the models. We take

two of the more common respiratory viruses, IAV and RSV,

to investigate the impact of cell regeneration on the dynam-

ics of simultaneous infection in the human respiratory tract.

Clinically, IAV-RSV is a common coinfection pair that is

documented in several studies10,15,21 and are reported to

have an impact on each other’s transmission dynamics due

to their seasonal co-circulation.26 Parameter values of IAV

and RSV are taken from our previous study35 and are given

in Table I. The results of the computer simulations are illus-

trated in Fig. 3 where both of the infections are initiated with

the same initial amount of viruses and also at the same time.

In the simultaneous infection with IAV and RSV, IAV

causes an acute infection; however, it dies out quickly, while

the slow growing RSV infection persists for more than two

weeks, indicating a chronic infection with RSV alone for

models of constant cell growth (model 1) and cell growth

proportional to dead cells (model 3). Models of cell growth

proportional to target cell (model 2) and logistic cell growth

(model 4) predict a similar infection growth profile to the

basic model of no cell regeneration. Since cell regeneration

is proportional to available target cells in model 2 and target

cell density regulates the cell regeneration rate in the logistic

growth model (model 4), it is obvious that the abundance of

target cells is restricted by the consumption of viruses, thus

showing no possibility of chronic disease in simultaneous

infection. Finally, no model shows coexistence of two viral

infections even though there is an unlimited resource of tar-

get cells. These results coincide with the theoretical results

of the stability analysis given in Table II. The boundary equi-

libria, Q1 and Q2, of the models with constant growth (model

1) and growth proportional to dead cells (model 3) give

TABLE II. Dynamics of coinfection models.

Model Steady states

0. No cell regeneration Infection free equilibrium

1. Constant growth Chronic single infection

2. Target cell replication Trivial equilibrium

3. Replacement of dead cells Infection free equilibrium,

chronic single infection

4. Logistic growth of target cells Infection free equilibrium
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chronic infection with only one virus from RSV and IAV

while in models of growth proportional to target cell (model

2) and logistic cell growth (model 4), acute infection with

IAV persists for a few days and dies within two weeks along

with the mild RSV infection.

We also calculated the duration of coinfection for each

of the models, as shown in Fig. 4. Here, coinfection duration

is defined as the time during which both viral concentrations

are found above the detection limit of 1.0 PFU/ml or 1.0

TCID50/ml. As earlier, models of cell growth proportional to

target cell (model 2) and logistic cell growth (model 4) give

the same coinfection duration as that of the basic model of

around 6 days, while the models of constant growth (model

1) and growth proportional to dead cells (model 3) give coin-

fection durations almost equal to 9 days.

Figure 4 shows the coinfection duration for a specific regen-

eration rate, but the coinfection duration might depend on the

exact value of the regeneration rate. To explore this dependence,

coinfection durations are plotted as a function of cell regenera-

tion rate in Fig. 5. For models constant growth (model 1) and

growth proportional to dead cells (model 3), we see that the

coinfection duration becomes longer with the increase in cell

regeneration rate. If the cell regenerates at a constant rate (model

1) or regeneration is proportional to dead cells (model 3), dura-

tion of coinfections increases gradually if cells start to regenerate

at a rate greater than 100/day, otherwise coinfection lasts for

6 days only. When regeneration is dependent on available target

cells (model 2), coinfection duration is constant at 6 days for

regeneration rate less than 1/days and then increases slightly

beyond this point. For the model assuming logistic growth, coin-

fection duration is again constant for small regeneration rate but

then decreases for regeneration rate larger than�0.1/day.

IV. DISCUSSION

In this paper, we have shown the existence of different

possible infection outcomes when different cell regeneration

mechanisms are considered. The steady states that were

found are the infection free equilibrium where both viruses

become extinct, and the two boundary equilibria where the

first virus outcompetes the second virus or the second virus

outcompetes the first virus. In the previously published basic

model of coinfection,35 viruses compete for the limited

FIG. 3. Coinfection time course of RSV and influenza A virus for different cell regeneration models with regeneration rate, r equal to 0.0333 per day.

FIG. 4. Coinfection duration predicted by each model of cell regeneration in

simultaneous infection with influenza and RSV having the regeneration rate,

r, equal to 0.0333 per day.

063109-9 L. Pinky and H. M. Dobrovolny Chaos 27, 063109 (2017)



resource of target cells and in this case, it was shown that

the virus with the faster growth rate infects more target cells

than the other. Eventually, however, both viruses die out

due to lack of target cells. When these viruses get a renew-

able pool of target cells or a source which is proportional to

dead cells as in the case of models 1 and 3, they keep infect-

ing more target cells, prompting the infection to become

chronic, but with only one virus. In models 2 and 4, where

cell regeneration is proportional to the available target cells

or logistic growth, respectively, the infection growth profile

is found to be similar to that of the model with no cell

regeneration. Depending on the exact value of regeneration

rate, we found that coinfection duration can be more than

two weeks for models 1 and 3.

Our primary finding that there cannot be chronic coexis-

tence supports the idea of the competitive exclusion principle

first suggested by Volterra.66 The competitive exclusion

principle states that if n number of species depend on fewer

than n number of resources, it is impossible to have indefi-

nite coexistence of n species under some assumptions. It is,

however, important to keep in mind that withdrawing some

of the model assumptions may allow different coinfection

dynamics such as coexistence of two viruses. Our model still

assumes spatial homogeneity for target cell density. This

assumption may not be realistic as propagation of virus is a

localized process and viral infectivity is found to be largely

dependent on cell concentrations.52,67 Bauer et al. suggested

that if the cell regeneration rate is not only a function of

number of available target cells or number of dead cells but

also their location, viral dynamics more closely resembled

experimental results,54 for single infections and so could also

better model coinfection dynamics.

The parameters of our model are time-invariant, similar

to the assumptions of Lotka-Volterra’s competitive exclusion

model where coexistence is not possible.68 Ecologists69–73

have shown that coexistence of two species on one resource

is possible only if the environment is time-variant, spatially

inhomogeneous and/or follows a nonlinear growth rate for

the resource. McGehee and Armstrong74 proved that coexis-

tence of two species on one resource is possible if the growth

rate is nonlinear and the rest of the limiting factors stay

unchanged. However, they found the coexistence to be a

periodic orbit rather than an equilibrium point.

Another assumption that might lead to coexistence if

relaxed is that a single cell is infected by only one type of

respiratory infectious virus. Studies show, however, that dif-

ferent viruses can attach to the same receptor and therefore

infect the same cell.75 Allowing both viruses to infect the

same cell may ease some of the resource competition in our

model and could change coinfection dynamics by producing

viruses at different rates than singly infected cells.

Finally, our model has neglected the role of the immune

response. Viruses may themselves produce factors that can

influence cells of the immune system which will also affect a

second virus. It is reported that chronic infections have the

potential to inhibit epithelial cell repair which further aids

secondary viral infections to take place easily due to the

damage and the immunological changes in the respiratory

tract environment.38 Interplay through the immune responses

is very likely to alter coinfection dynamics.76

FIG. 5. Coinfection duration of simultaneous infection with RSV and influenza A virus for different cell regeneration models as a function of regeneration rate, r.
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Coinfections are found to be affected by the availability

of target cells as replication of viruses during infection

depends on resource dynamics. Here, cellular regeneration

acts as a continuous available resource for the viruses to

grow for a longer time compared to having no cell regrowth

at all. Thus, in the presence of a continuous resource of cell,

previously observed coinfections turn into chronic coinfec-

tion with one virus. However, under the model assumptions

of spatial homogeneity of cellular concentration, time inde-

pendent parameters, linear growth rates of target cells,

absence of superinfection of the same cell by two different

viruses, and consideration of exponential distribution of

number of eclipse and infected cells, no cell regeneration

models of this study support coexistence of two viral infec-

tions during coinfection in the human respiratory tract.

APPENDIX: COMPUTATION OF R0

The characteristic equation for the infection free steady

state (T� ¼ T) of the basic model is

k � fk3 þ k2ðc1 þ d1 þ k1Þ þ kðc1d1 þ d1k1 þ c1k1Þ

þðc1d1k1 � b1p1k1TÞg � fk3 þ k2ðc2 þ d2 þ k2Þ

þkðc2d2 þ d2k2 þ c2k2Þ þ ðc2d2k2 � b2p2k2TÞg ¼ 0:

R0 can be found from the spectral radius (largest eigenvalue)

of the next generation matrix, i.e., ðFV�1Þ, where F is the

transmission matrix and V is the transition matrix supplied

by the system of equations65

F ¼

0 0 0 0 b1T 0

0 0 0 0 0 b2T

0 0 0 0 0 0

0 0 0 0 0 0

0 0 p1 0 0 0

0 0 0 p2 0 0

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

V ¼

�k1 0 0 0 0 0

0 �k2 0 0 0 0

k1 0 �d1 0 0 0

0 k2 0 �d2 0 0

0 0 0 0 �c1 0

0 0 0 0 0 �c2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

;

FV�1 ¼

0 0 0 0 �b1T

c1

0

0 0 0 0 0 �b2T

c2

0 0 0 0 0 0

0 0 0 0 0 0

� p1

d1

0 � p1

d1

0 0 0

0 � p2

d2

0 � p2

d2

0 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

:

The dominant eigenvalue of the matrix FV�1 is equal to

R0, where

R0 ¼ maxðR01;R02Þ:

The R0 calculation is the same for models 2 and 4.
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