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A B S T R A C T

Globally, rotavirus is the most common cause of diarrhea in children younger than 5 years of age, however, a
quantitative understanding of the infection dynamics is still lacking. In this paper, we present the first study to
extract viral kinetic parameters for in vitro rotavirus infections in the REH cell tumor line. We use a mathematical
model of viral kinetics to extract parameter values by fitting the model to data from rotavirus infection of REH
cells. While accurate results for some of the parameters of the mathematical model were not achievable due to its
global non-identifiability, we are able to quantify approximately the time course of the infection for the first
time. We also find that the basic reproductive number of rotavirus, which gives the number of secondary in-
fections from a single infected cell, is much greater than one. Quantifying the kinetics of rotavirus leads not only
to a better understanding of the infection process, but also provides a method for quantitative comparison of
kinetics of different strains or for quantifying the effectiveness of antiviral treatment.

1. Introduction

Diarrhea is one of the leading causes of mortality among children
under five years old worldwide (Black et al., 2010). Rotaviruses are the
single most important agents of diarrhea associated with mortality in
this age group (Bruun et al., 2016; Ho et al., 1988). While there is a
rotavirus vaccine that has mitigated some of the disease burden in
wealthy countries (Gervasi et al., 2016; Prelog et al., 2016; Lamberti
et al., 2016), rotavirus still creates a heavy burden in low income
countries (Bennett et al., 2016; Mehendale et al., 2016; Lamberti et al.,
2016). Issues such as low vaccine coverage and low on-time im-
munization in developing countries limit the benefits of vaccination
(Guerrero et al., 2013; Santosham, 2010). Thus, there is still a need to
develop strategies for treating rotavirus-associated diarrhea, especially
in the poorest countries (Guerrero et al., 2014). A number of different
compounds are currently being developed (Guerrero et al., 2014; Lopez
et al., 2015; Galan et al., 2016; Yin et al., 2015; Kang et al., 2015; Lee
et al., 2015), but there is still more testing to do.

Recently, researchers have also started investigating rotavirus for its
use in oncolytic virotherapy (Guerrero et al., 2016). Some viruses have
the ability to selectively infect and kill cancer cells, a property re-
searchers are trying to exploit to treat cancer (Huang et al., 2016;

Delwar et al., 2016; Zhao et al., 2016). Rotavirus could be a good
candidate for this application since it has a natural very specific cell
selection mechanism (Bass et al., 1992; Fleming et al., 2011), but we
need a better understanding of rotavirus infections in cancer cells to
continue development of rotavirus for oncolytic virotherapy.

Mathematical models of viral infections are now being used to
further our understanding of several different viruses including influ-
enza (Baccam et al., 2006), human immunodeficiency virus (Perelson
et al., 1996), hepatitis (Neumann et al., 1998), respiratory syncytial
virus (Gonzalez-Parra and Dobrovolny, 2015), and ebola (Nguyen et al.,
2015). These models have been used to quantify key parameters of the
infection processes (Baccam et al., 2006; Perelson et al., 1996;
Neumann et al., 1998; Pinilla et al.,2012), optimize drug treatment
regimens (Sheikhan and Ghoreishi, 2013; Zhang et al., 2002; Padhi and
Bhardhwaj, 2009; Dobrovolny et al., 2011, 2013), and understand
complex host–virus interactions (Atkins et al., 2012; Dobrovolny et al.,
2011, 2013; Canini and Carrat, 2011). While mathematical models
have been used to study spread of rotavirus at the population level
(Omondi et al., 2015; Lopman et al., 2012; Atkins et al., 2012; Pitzer
et al., 2011), models of within host dynamics have not yet been applied
to rotavirus.

In this paper, we use a mathematical model to extract parameters
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describing the in vitro viral kinetics of rotavirus for the first time. We
estimate the time it takes between release of a virion and infection of
the next cell, the duration of the eclipse phase. We also estimate the
average number of virus particles produced by a single cell as well as
the amount of virus needed to infect a cell. We then use our parameter
estimates to examine how well rotavirus decreases REH cells under a
variety of initial viral inocula and cell growth rate. Our findings help to
quantitatively characterize rotavirus infections and represent a first
step in developing rotavirus for use in oncolytic virotherapy.

2. Methods

2.1. Cells

REH cells (human acute lymphocytic leukemia non-T; non-B,
ATCC1 CRL-8286™) were kindly donated by Dr. J.P. Vernot, Faculty of
Medicine, Universidad Nacional de Colombia). Cell line was cultured in
RPMI 1640 (Sigma–Aldrich, St. Louis, MO, USA) supplemented with
10% fetal bovine serum (FBS) (Eurobio, Les Ulis, France) and 100 μg/
mL streptomycin and penicillin (Eurobio, Les Ulis, France). Cell line
was cultured in a humidified atmosphere with 5% CO2 at 37 °C. Culture
was maintained by addition or replacement of fresh medium.

2.2. Wt1-5 rotavirus strain

Rotavirus Wt1-5 was isolated by Dr. C.A. Guerrero (Faculty of
Medicine, Universidad Nacional de Colombia) from stool samples of
five different children with diarrhea by rotavirus. Rotavirus Wt1-5 was
purified as previously described in Guerrero et al. (2010, 2014). Briefly,
stool samples were thawed and centrifuged at 100,000 × g for 90 min
at 4 °C. The pellet was suspended in Tris-buffered saline (TBS) (10 mM
Tris–HCl, pH 7.4, 150 mM NaCl, 1 mMMgCl2, 5 mM CaCl2), then mixed
with one-third volume of 1,1,2-trichlorotrifluoroethane (Sigma, St.
Louis, MO, USA) and emulsified by vortexing for 5 min. Phases were
separated by spinning at 13,000 × g for 10 min at 4 °C. The aqueous
phase was recovered, and the organic phase was extracted three times
with TBS buffer. The combined aqueous phases were spun at
100,000 × g for 90 min at 4 °C, and the pellet was suspended in TBS
buffer. Virus suspension was over-layered on a preformed sucrose/CsCl
discontinuous gradient consisting of 1.4157 g/cm3 (0.5 mL), 1.3039 g/
cm3 (1 mL) and 1.2070 g/cm3 (0.5 mL) CsCl (Sigma, St. Louis, MO,
USA) and an upper layer of 30% (w/v) sucrose (Sigma, St. Louis, MO,
USA). Isopycnic centrifugation was performed at 280,000 × g for 1.5 h
at 4 °C in a Sorvall TST 60.4 rotor. Visible virus bands were aspirated
using a syringe and then diluted with TBS, spun at 100,000 × g for
1.5 h at 4 °C and the virus pellet was suspended in TBS. Rotavirus Wt1-5
was adapted to infect REH tumor cell line as previously described in
Guerrero et al. (2016).

2.3. Infection of cells

To infect REH cells, Wt1-5 rotavirus was activated in serum-free
medium with 1 μg/mL trypsin. Cells were washed twice in serum-free
medium and then infected at two different multiplicity of infection
(MOI) of 0.7 and 1.4. UV-psoralen inactivation of purified rotaviruses
was performed as control as described previously (Groene and Shaw,
1992), and verified using infectivity. The inoculum was removed 1 h
later and replaced with a RPMI medium containing or not 10% fetal
bovine serum. This time was defined as 0 h postinfection (h.p.i.) for all
experiments. Infected cells were incubated in a humidified atmosphere
with 5% CO2 at 37 °C. The percentage of rotavirus antigen-positive cells
was determined every 2 h until 12 h.p.i., and a cell aliquot was also
harvested at 24, 36 and 48 h.p.i. Cells were fixed with 4% paraf-
ormaldehyde (PFA) in PBS for 30 min at room temperature (RT).
Afterwards, cells were washed twice with PBS and resuspended in PBS
containing 0.02% sodium azide before being stored at 4 °C until use.

The percentage of infected cells in terms of rotavirus antigen positive
cells was assessed by immunocytochemistry.

2.4. Immunocytochemistry

Suspension cells were fixed in 4% PFA for 30 min at room tem-
perature (RT), placed onto glass slides previously cleaned with xylol.
Cells were dried for approximately 30 min in an oven at 50 °C. After
permeabilization in 0.5% Triton X-100 solution for 5 min at RT, the
cells were washed twice in PBS and incubated with primary rabbit
polyclonal antibodies (Abs) (produced in our animal facilities) against
rotavirus structural proteins (SP) for 1 h at 37 °C. After washing twice
with PBS, the cells were incubated with secondary HRP-conjugated goat
anti-rabbit Abs (0.133 μg/mL, Santa Cruz Biotechnology Inc., Santa
Cruz, CA, USA) for 1 h at 37 °C. Following several washes with PBS,
cells being positive to rotavirus antigen were visualized with 0.64 mg/
mL of 3-amino-9-ethylcarbazole (AEC) substrate in 50 mM acetate
buffer, pH5-0, containing 0.04% H2O2. Non-infected tumor cells or
infected tumor cells treated with non-related antibodies were used as a
control. At least ten representative images were photographically re-
corded using a conventional light microscope (VanGuard, Scottsdale,
USA) equipped with a camera, and the mean percentage of infected
cells was determined.

2.5. Cell viability test

Villus cell viability was measured using Trypan blue solution
(Sigma–Aldrich, St. Louis, MO, USA) in an exclusion assay. Rotavirus-
infected and mock-infected REH cells were assessed after different
hours postinfection (h.p.i.). Namely, Trypan blue (0.4% in 0.81% so-
dium chloride and 0.06% potassium phosphate, dibasic) solution was
combined with cell suspension in a 1:1 ratio, and the percentage of
dead blue cells in the population quantified in a Neubauer chamber
under a light microscope. As cell death control, REH cells were treated
with 1 μM of H2O2.

2.6. Virus titration

To determine the production of infectious virions by REH tumor
infected cells with the tumor cell-adapted rotavirus isolates WT1-5, the
infected cells were harvested every 2 h until 12 h.p.i. Cell samples were
also harvested at 24, 36 and 48 h.p.i. and it was lysed by two cycles of
freezing and thawing. The supernatant from each postinfection time
point was activated with trypsin and tested at serial dilutions in new
REH cells. The infected cells were fixed at 12 h.p.i. as previously de-
scribe and the corresponding infectious titer was determined as focus
forming units (FFU) by immunocytochemistry. Measurements were
made with three replicates and the geometric mean of the three samples
for each time point was used for analysis.

2.7. Gamma distributed viral kinetic model

In this paper we use a model based on an autonomous system of
nonlinear ordinary differential equations to characterize the in vitro
infection dynamics of rotavirus. The model is an extension of an in-
fection model commonly used for influenza (Pinilla et al., 2012; Beggs
and Dobrovolny, 2015; Paradis et al., 2015; Simon et al., 2016), but
here we include some additional features. We include a logistic growth
term rT(1 − T/K) for the target cells in order to model the growth of
the cells that has been observed in lab experiments. Note that death of
cells is implicitly included in the growth term of the logistic model. We
also include a term modeling absorption of virus into the cell, γT V. The
model is shown in Fig. 1 and is represented by the following system of
equations,
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In this model, uninfected target cells, T, are infected at a rate β when
they encounter a virion V. Target cells reproduce according to a logistic
model, where the growth rate r decreases as the number of cells ap-
proaches a maximum carrying capacity of K. The newly infected cells,
E, first enter the eclipse phase, where the cells are infected but not yet
actively producing virions. After an average time τE, the cells transition
to the infectious phase, I, where they actively produce virus at a rate p.
After an average time τI, infectious cells die. Virus is cleared, through
loss of infectivity, from the system at a rate c, and is absorbed into
target cells at a rate γ. The transitions between eclipse/infectious cells
and infectious/dead cells are modeled as gamma distributions, which
are more biologically realistic than the exponential transitions, which
assume that cells can immediately begin viral production upon infec-
tion, and can produce virus indefinitely, used in more basic viral in-
fection models (Holder and Beauchemin, 2011). nE and nI are the
number of compartments used to represent the eclipse phase and in-
fectious phase, respectively. In the gamma distributed model the stan-
dard deviations of the eclipse and infectious phases are =σ τ n/E E E and

=σ τ n/I I I .

2.8. Fitting algorithms

We determine the best fit by minimizing the sum of squared re-
siduals (SSR) between the experimental and predicted values, although
we use a modified sum of squared residuals function to deal with the
different types of data in this experiment. We include four terms related
to viral load and infected cells for the two different MOIs (0.7 and 1.4).
This type of approach has been used before in viral dynamics (Cao
et al., in press; Pawelek et al., 2012). In this case the SSR has four parts,
one for each for the viral titer and infected cells for both of the MOIs.
For each of these components, the SSR is calculated with,

∑= −
=

y f tSSR (log( ) log( ( ))) ,
i

n

i i
1

2

(2)

where n is the number of experimental data points, log(yi) are the

logarithmic values of the experimental data points, log(f(ti)) are the
model predictions (either virus or infected cells). All data points are
weighted equally. A small SSR indicates a tight fit of the model to the
experimental data. In order to ensure that parameter estimates are
biologically realistic, we placed bounds on some of the parameters
(Table 1).

Fitting was done in two stages. We first fit the growth kinetics of
REH cells using the logistic model in order to extract the growth rate r
and maximum number of cells K. The values of these two parameters
were then fixed as we fit the viral kinetics model (Eq. (1)) to experi-
mental data. To extract viral kinetics parameters, we simultaneously fit
both the low MOI (0.7) and high MOI (1.4) experiments. We assumed
that the viral kinetics parameters are the same for both experiments,
but that the initial conditions differ. In the experiments, virus is added
to the cells for one hour and then washed away. To best replicate these
conditions, we assume that the infections are initiated with cells in the
eclipse phase. The amount of virus initially added to the cell culture is V
(0) = MOI * T(0). In one hour, this amount of virus will infect
β * T(0) * V(0)Δt (Δt= 1 h) cells. We assume that when the virus is
washed away, the infected cells will still be in the eclipse phase, so our
infection is initiated with E1(0) = β * T(0)2 * MOI cells in the first
compartment of the eclipse phase. We fix the initial number of target
cells to the experimentally measured initial value of T(0) = 1.58 × 106

cells. All other compartments of the eclipse phase, all compartments of
the infectious phase and virus are assumed to be zero initially.

We used two algorithms to find the minimum SSR. We initially used
a genetic algorithm (Golberg, 1989) which performs a very broad
search of the parameter space and is less dependent on the initial guess.
This algorithm is based on a natural selection process that mimics
biological evolution. The algorithm changes a population of individual
solutions such that at each step, the algorithm randomly selects solu-
tions from the current population and uses them as seeds to produce the
parameter estimates for the next generation. Over many iterations, the

Fig. 1. Viral kinetics model. In the model, healthy target cells are infected by virus. The cells then move into an eclipse phase when the virus starts to undergo replication. The cells then
transition to an infectious phase where they continuously produce virus until they die.

Table 1
Parameter bounds used for fitting.

Parameter Meaning Bounds

p Viral production rate 100–1010 FFU/mL cell−1 h−1

β Infection rate 10−10–1 (FFU/mL)−1 h−1

c Viral clearance rate 10−4–101/h
τI Mean duration of infectious phase 0.25–120 h
τE Mean duration of eclipse phase 0.25–120 h
nI Number of stages of infectious phase 1–100
nE Number of stages of eclipse phase 1–100
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population “evolves” toward an optimal solution (Golberg, 1989;
Holland, 1992; Conn et al., 1997). There are many parameters that can
be varied in the genetic algorithm. We used different scenarios for
parameters such as population size, the number of generations, and the
initial population function, among others. Due to the random nature of
the genetic algorithm a range of solutions are obtained, which helps to
cover the large search space. It is important to remark that the genetic
algorithm is well suited to find global optimums instead of local ones.
We ran the global optimization algorithm 1000 times with different
scenarios (initial guess, parameters of the optimization process) in
order to improve the probability of finding the global optimum para-
meter set.

Once the genetic algorithm found a good fit, these parameters were
used as the initial guess for the trust-region-reflective and interior point
algorithms (Coleman and Li, 1996; Press et al., 1992), which search a
more localized region of the parameter space. The use of several dif-
ferent algorithms increases the probability of finding the global
minimum for the SSR, which is not a straightforward task for this
model. All fitting was implemented in Matlab using the ga and the
fmincon functions of the optimization package.

To estimate the error in our parameter estimates, we compute the
95% confidence intervals for each of the parameters using boot-
strapping. Specifically, we use the percentile bootstrap method, i.e.,
using percentiles of the bootstrap distribution (Davison and Hinkley,
1997; Efron, 1979). Fit residuals were sampled with replacement to
produce 1000 bootstrap replicates of the data sets and used to estimate
the 95% confidence intervals. In addition, we used the profile like-
lihood method which is a generalization of classical approaches like
standard errors which are based on the Fisher-Information matrix. The
profile likelihood provides reasonable confidence intervals for para-
meter estimation of ODE models and allows assessment of the iden-
tifiability of model parameters (Kreutz et al., 2012; Raue et al., 2009,
2013; Tönsing et al., 2017; Raue et al., 2013).

3. Results

3.1. Growth dynamics of REH cells

As described in the methods, we first fit a logistic growth model to
experimental data capturing growth of REH cells. The experimental
data and the best model fit along with best fit parameter values are
shown in Fig. 2. The growth rate, r, is related to doubling time (DT)
through =DT r

ln(2) , so we find that the doubling time of these cells is
6.8 h. This is faster than previous estimates of 21 and 26 h (Atzpodien
et al., 1986; Aldridge and Radford, 1998), although these previous es-
timates assumed exponential growth so their estimates might be slower
to correct for saturation effects.

3.2. Parameter estimates for rotavirus dynamics in the REH cell line

Having determined the parameters describing growth dynamics of
REH cells, we fixed those parameters and fit the viral time course and
infected cell data with the viral kinetics model, Eq. (1). Fig. 3 shows the
experimental data for both the 0.7 MOI (left) and 1.4 MOI (right) ex-
periments and the best fit model dynamics. The model (1) is able to
reproduce the kinetics of both the rotavirus and the infected cells. Best
fit parameters along with 95% confidence intervals using the percentile
bootstrap method are given in Table 2.

In addition to the parameters used directly in the model, Table 2
presents parameter combinations that provide biologically interesting
quantities. Note that while our fitting algorithm has returned a possible
set of parameters, they might not be the only parameter set that ade-
quately explains the data. We found that the duration of the eclipse
phase, which is the time between viral entry and production of the first
virion, is 7.25 h. This means that it takes, on average, about 7 h for

synthesis of viral proteins, replication, and assembly of the virus. We
also found that the duration of the infectious phase, which is the time
period when cells are actively producing virus is 46.2 h. Together, these
quantities tell us that cells infected with rotavirus will live, on average,
for ∼53 h after they are infected, with the majority of that time spent
actively producing virus. We can also derive the standard deviations for
the durations of the eclipse and infectious phases (σE and σI). For a
gamma-distributed process, the standard deviation is =σ τ n/ . For
rotavirus, the standard deviations are 16.3 h for the infectious phase
and 2.29 h for the duration of the eclipse phase. These distributions are
pictured in Fig. 4 where we plot the probability of a cell transitioning
out of a particular phase as a function of the time it has spent in that
phase.

Another time duration of interest is the infecting time, tinf, defined
as the average time it takes for an infectious cell to infect another cell
(Holder and Beauchemin, 2011), and given by =t βpT2/inf 0 . We found
that this process was very fast for rotavirus, only taking about 2 min.

Finally, we calculate some quantities that quantify virus-cell inter-
actions. The quantity γ/β gives the amount of virus that is absorbed into
a cell in order for it to become infected. We found that for rotavirus
1410 FFU/mL cells−1 is absorbed before a cell becomes infected. While
this might seem like a large number, it is not clear how many infectious
virions are in 1 FFU/mL (Heider and Metzner, 2014). Once infected, pτI
gives the average amount of virus produced over the infectious lifetime
of a single cell, which we found to be 1.42 × 105 FFU/mL cells−1. The
basic reproductive number, R0, given by

=
+

R
βpτ T

c γT
I

0
0

0 (3)

for this model (Beauchemin et al., 2008), represents the average
number of secondary infections caused by a single infected cell in-
troduced into a susceptible population. Our calculated value of
R0 = 100 is in line with our estimates that 1.42 × 105 FFU/mL cells−1

are produced by an infectious cell, but that 1410 FFU/mL cells−1 are
needed to infect a second cell. This also suggests, then, that viral
clearance is negligible over the time span that it takes to infect a cell.
Note that while there might be some uncertainty in the parameter es-
timates from our choice of T0 and V0, changing the initial number of
target cells will rescale the production rate only, while changing the

Fig. 2. Best fit of the logistic growth model to experimental growth of REH cells. Black
circles give the experimental data and the red line shows the best model fit. Best fit
parameter values and 95% confidence intervals are given in the table.
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initial viral load will rescale the infection rate and the production rate.
In either case, R0 and infecting time tinf are not affected by rescaling
since they involve combinations of parameters. Also, any parameter
that has units of time only (clearance rate, duration of eclipse and in-
fectious phases) is also not affected by rescaling of target cells or virus.

We used a variety of methods to assess the goodness of fit of the
model to the experimental data. First, we examined the likelihood
profiles which are an excellent tool to check that we have reached at
least a local minimum and have structural identifiability of the para-
meters (Kreutz et al., 2012; Raue et al., 2009). These are shown in Fig. 5

with 95% significance thresholds indicated by dashed lines. Almost all
parameters are well-identified since they lie at the minimum of the SSR
function, with the exception of nI and τI. For nI, several different values
give equal SSRs, so it is not identifiable. Previous work fitting a similar
model to influenza viral loads found the same issue and researchers in
that case decided to fix nI, in order to avoid this identifiability issue
(Pinilla et al., 2012; Paradis et al., 2015; Simon et al., 2016). The profile
likelihood reveals that the parameter τI is practically non-identifiable
for increasing parameter values despite achieving a minimum value of
SSR. Since the likelihood profile does not cross the significance

Fig. 3. Best fit of the viral kinetics model to rotavirus infection of REH cells. Black circles indicate experimental data and lines represent the best model fit. Viral titer (left column) and
infected cells (right column) are shown for infections with an MOI of 0.7 (top row) and an MOI of 1.4 (bottom row).

Table 2
Estimated parameters for rotavirus in vitro infection in tumor cell lines.

Parameter Value 95% confidence
interval from
bootstrapping

95% confidence
interval from
likelihood profile

β (FFU/mL−1 h−1) 3.24 × 10−7 (2.94–3.66) ×10−7 (2.95–4.25) ×10−7

p (FFU/mL cells−1 h−1) 3070 2740–3740 2340–5150
c (/h) 3.77 3.17–3.97 1.32–11.0
τI (h) 46.2 44.1–50.3 28.5–∞
τE (h) 7.25 6.42–7.74 6.39–7.83
nI 8 — —
nE 10 — 8–13
γ (cells−1 h−1) 4.57 × 10−4 (4.16–4.85) ×10−4 (1.57–6.57) ×10−4

SSR 18.3 16.7–19.0
σI (h) 16.3 15.6–17.8
σE (h) 2.29 2.14–2.58
tinf (h) 0.0350 0.0314–0.0372
γ/β (FFU/mL cells−1) 1410 1210–1550
pτI (FFU/mL cells−1) 1.42 × 105 (1.25–1.87) ×105

R0 100 88.5–160
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threshold on one side, there is no upper bound to the acceptable values
of τI (Raue et al., 2009). In addition to the profile likelihood we present
in Table 2 the simultaneous confidence intervals to a confidence level of
95%. These likelihood-based confidence intervals are considered su-
perior to asymptotic confidence intervals for finite samples (Raue et al.,
2009). While the likelihood profiles suggest that we have reached a
local minimum, it is not necessarily the global optimum.

As a measure of the variability in our parameters, we include the

five best fit values found using the genetic algorithm in Table 3. Based
on these results we can infer that that the model is not globally iden-
tifiable, as different sets of parameters can produce similar SSRs. The
best results are relatively consistent at least in the order of magnitude of
the parameter values. Due to the number of free parameters, it is not
unexpected that we will find many local optima when searching for a
global one. The best five fits presented here give us another measure of
the possible uncertainty in our estimates. For example, tinf values vary
between 1.22 and 2.46 min, which is a reasonable range. For R0, we
obtain a range from 100 to 301, which seems quite large. However, the
interesting value of R0 is 1 since that marks the boundary between
growth and suppression of an infection. Previous work has suggested
that once R0 > 7, the value of R0 is not indicative of any change in
dynamics (Smith et al., 2010). While a change in R0 from 100 to 300
seems large, the change in infection dynamics given these values of R0

is very small.
Another method for assessing the identifiability of parameters is to

look for correlations in parameter estimates. We do this by creating
scatter plots of pairs of parameters from our bootstrap results, as shown
in Fig. 6. We see no correlations between any of the parameter esti-
mates. Finally, we also performed a sensitivity analysis using the best fit
parameters given in Table 2. We increased and decreased the parameter
values by different percentages (from 50% to 400%) based on the
variability of each parameter in Table 3 to see their effects on rotavirus
dynamics. As can be seen in Fig. 7 the plots show the robustness of the
outcomes of the model respect to changes on the parameter values.
Both the viral time courses and the infected cell time courses seem to be
most sensitive to changes in τE, particularly in the early stages of the
infection. The infection rate, production rate, and clearance rate all

Fig. 5. Likelihood profiles of the fit to the rotavirus data. Profiles show the change in SSR as each parameter is varied from its best fit value. Dashed lines indicate the 95% significance
level.

Fig. 4. Probability distribution functions of the eclipse and infectious durations of rota-
virus. The curves indicate the probability of transitioning out of the eclipse state (black
line) or the infectious state (red line) as a function of the time spent in that state. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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affect the viral time course, but do not change the time course of in-
fected cells. The confidence interval estimates for each parameter, the
likelihood profiles, correlation analysis and the sensitivity analysis give
a measure of the variability of each of the parameters. Based on these
results, we can suggest that rotavirus dynamics can be modeled rea-
sonably well by the proposed mathematical model with the parameter
values presented.

3.3. Viral suppression of REH cell growth

One advantage of a mathematical model is that we can predict the
time course of components of the system that are not measured, or we
can predict the time course at time points that have not been measured
experimentally. In Fig. 8, we show the time courses of target, eclipse,
and infectious cells, as well as the viral titer for the two experiments
presented earlier. We see that for both MOIs, the target cells (red lines)
are depleted very quickly; in less than 12 h after initiation of the in-
fection, all the REH cells have been infected. While the cells are infected
quickly, they take a longer time to be cleared. While the cells pass
through the eclipse phase (green lines) fairly quickly (about 24 h after
initiation of infection), infectious cells (blue lines) persist for as long as
seven days after initiation of infection. Since infectious cells are still

producing virus, this means that the viral titer will also remain high
while there are still infectious cells remaining.

Not only can we extend the results of specific experiments, in order
to better understand how each variable changes over the course of the
infection, but we can also use the mathematical model to examine the
effect of different variables. There are two reasons to use models in this
way, the first is to make predictions that can be tested experimentally to
further validate (or reject) the model. The second reason is to under-
stand the role of variables that are difficult to manipulate experimen-
tally. One reason we are interested in examining the viral kinetics of
rotavirus is because it is being investigated for oncolytic therapy
(Guerrero et al., 2016), so an endpoint of interest is the length of time it
takes to kill all the cancer cells. In Fig. 9, we examine how long it takes
to eradicate all REH cells in the assay as a function of MOI (left) or cell
growth rate (right). We see that as MOI decreases, the time to eradicate
the cells increases. This is because the early cycles of infection infect
only a few cells when MOI is small. At high MOI, the time to eradicate
the cells becomes constant. This time of ∼179 h represents the
minimum time required for all cells to become infected and move
through both the eclipse and infectious phases. The cell growth rate
does not affect the time to cell eradication quite as much as changes in
the MOI. There is a slight increase in the time to cell eradication as the

Fig. 6. Bootstrapping results using the best parameters given in Table 2.

Table 3
Best sets of the estimated parameters for rotavirus in vitro infection in tumor cell lines.

β (FFU/mL−1 h−1) p (FFU/mL cells−1 h−1) c (/h) τI (h) τE (h) nI nE γ (cells−1 h−1) SSR

3.24 × 10−7 3070 3.77 46.2 7.2 8 10 4.57 × 10−4 18.34
3.09 × 10−7 7710 11.2 51.4 6.9 7 11 1.12 × 10−3 18.34
3.26 × 10−7 9370 10.0 53.4 10.3 3 7 5.35 × 10−4 18.39
2.68 × 10−7 6380 8.39 50.4 6.8 7 11 6.31 × 10−4 18.43
3.34 × 10−7 2250 2.22 50.3 9.8 2 7 1.58 × 10−4 18.54
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growth rate increases, an effect that is more apparent at low MOI.

4. Discussion and conclusions

This paper presented the first fits of a viral kinetics model to an in
vitro rotavirus infection. While not all of the parameters estimated here
are identifiable, it is interesting to compare our estimates to previous
work in an effort to assess their accuracy. Unfortunately, since in vitro
rotavirus dynamics have not yet been quantified in this way, it is dif-
ficult to perform this kind of comparison for all the estimated

parameters. Some previous studies measured the duration of the eclipse
phase more directly, finding that the duration of the eclipse phase for
ovine rotavirus is 6 h (Berrios et al., 1993) and for rhesus rotavirus is
8 h (Bass et al., 1992), both of which are fairly close to our estimate of
7.25 h. In another study, Makabe et al. (1986) noted that there was
evidence of cell death at about 2 days post infection for ovine rotavirus,
consistent with our estimates of the distribution of cell lifespans. Bass
et al. (1992) also measured the average amount of virus produced per
infected cell for four cell lines, finding that infected cells produced
between 49–146 pfu/cell. Our estimate is much larger than this, but

Fig. 7. Sensitivity analysis using the best parameters given in Table 2. The parameter values have been increased and decreased by 50–400% to see their effects on rotavirus dynamics.
Each column shows a quantity measured: virus MOI 0.7 (left column), virus MOI 1.4 (1st center column), infected cells MOI 0.7 (2nd center column), and infected cells MOI 1.4 (right
column). Each row shows the results for a particular parameter: virion production rate p (first row), β (second row), clearance rate c (third row), infected phase τI (fourth row), eclipse
phase τE (fifth row) and binding rate g (last row).

G. González-Parra et al. Virus Research 244 (2018) 53–63

60



infectious virus in our experiment is measured using a different tech-
nique, so the two values cannot be properly compared (Kitamoto et al.,
1991).

A particularly interesting parameter estimate is the very rapid in-
fecting time of 2 min. In these 2 min, the newly-formed virion leaves
one cell and migrates to another, which seems to be a rather short time
for a particle to diffuse to a new location and gain entry into the cell.
However, some studies have determined that rotavirus can gain entry
into a cell in less than 5 min (Suzuki et al., 1985; Kaljot et al., 1988).
There is also some evidence that under certain conditions, rotavirus can
cause fusion of cell membranes (Knipping et al., 2012; Falconer et al.,
1995; Gilbert and Greenberg, 1997; Gelberg et al., 1990), thus
spreading directly from cell to cell rather than through extracellular
diffusion, a much faster transmission process. While seemingly short,
given this experimental evidence, our estimate of the infecting time
might not be unreasonable.

Once parameterized, we used our model to examine whether rota-
virus is a good candidate for use in oncolytic virotherapy. Specifically,
we assessed how quickly rotavirus cleared all the REH cells in our
system. We found that there was a strong dependence of cancer cell
eradication time on the initial viral inoculum (MOI), but there is little
sensitivity of cell eradication time on cell growth rate. The predicted
model dependency of cell eradication time on MOI is a feature of the
model that can be tested experimentally to provide further support or
perhaps to reject the model. The model prediction of cell eradication
time dependence on growth rate is difficult to test experimentally, but
has some important implications for possible use of rotavirus in onco-
lytic therapy. Since tumor growth rate is known to vary from patient to
patient (Nayyar et al., 2016), the fact that rotavirus seems to effectively

suppress cells with different growth rates means it should be broadly
effective in vivo. We must be careful about introducing the correct in-
itial viral inoculum, however, since low MOI leads to longer suppres-
sion times. The average number of tumor cells in a patient is much
higher than the number of cells in our system, so it is unlikely that high
MOIs will be used to treat patients, so careful consideration of the dose
will be needed.

A particular concern when using this type of analysis is that we have
found the global minimum for the SSR and that the model parameters
are identifiable. However, in many cases it is difficult to prove or
achieve either of these (Chis et al., 2011; Nguyen et al., 2016). For
example, in Wu et al. (2008), the authors did an algebraic identifiability
analysis for a similar, but simpler, model of only three ordinary dif-
ferential equations. Our gamma model has a variable number of or-
dinary differential equations but roughly more than twenty, so the
mathematics needed for analysis of this model are even more complex.
Structural identifiability analysis cannot simply be scaled-up from a
three equation model to a model with a larger number of equations. It is
important to be aware that despite the interest in knowing a priori
whether there is any chance of uniquely estimating all model unknown
parameters, the structural identifiability analysis for general non-linear
dynamic models is still an open question (Chis et al., 2011; Nguyen
et al., 2016). While it is not the same as doing a full mathematical
analysis of the identifiability of our model, we can use the work of
others to infer the identifiability of our parameters. In Pinilla et al.
(2012), the authors did an identifiability analysis of a similar gamma-
distributed model and found that the only parameter not identifiable
was the standard deviation of the infectious life span which is related to
the number of stages of the infectious phase nI. In our case, we have

Fig. 8. Model predictions of the time course of the infection. We show the full time courses for all elements of the MOI=0.7 experiment (left) and MOI=1.4 experiment (right). Viral titer
is indicated by the black line, target cells are given by the red line, eclipse cells are given by the green line, and infectious cells are given by the blue line. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Time to eradication of all REH cells in the experimental system as a function of MOI (left) or cell growth rate (right).
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some additional data regarding the infected cells which provides extra
information available for the fitting process. Specifically, having the
time course of infected cells as well as the time course of virus allows
for differentiation of virus and infected cell lifetimes which cannot be
separately identified from viral time course alone (Smith et al., 2010).
Unfortunately, even this extra data did not result in practical iden-
tifiability of nI and τI in this case. Full experimental validation of the
model would require further experiments at different MOIs with data
collected over a longer period of time.

The methodology presented here, fitting mathematical models to
experimental data, allows us to quantify different aspects of the viral
life cycle. While this information is helpful for developing our under-
standing of rotavirus replication, it also has other applications. This
technique can be used to quantitatively compare two different viral
strains to better assess fitness or virulence (Pinilla et al., 2012; Paradis
et al., 2015; Simon et al., 2016). It can also be used to infer the me-
chanism of action of antivirals by quantifying changes in different parts
of the viral replication cycle when antivirals are used (Beauchemin
et al., 2008; Gonzalez-Parra et al., 2016). In the case of rotavirus, it
could be used to quantitatively compare growth of rotavirus in different
tumor cell lines as part of the assessment of its potential use in oncolytic
virotherapy.

While our model captures the basic features of rotavirus infection,
there are some biological processes that have been neglected in the
current study that will need to be considered in future work. As noted
earlier, there is some evidence that rotavirus can cause cell membrane
fusion and transmit directly from one cell to another (Knipping et al.,
2012; Falconer et al., 1995; Gilbert and Greenberg, 1997). This mode of
transmission is not explicitly described in our model, although its effect
is seen in the short infecting time. Our model also does not include the
immune response to rotavirus. Studies have shown that rotavirus trig-
gers a rapid innate immune response (Holloway and Coulson, 2013),
but that rotavirus has developed mechanisms to evade this response
(Arnold, 2016; Morelli et al., 2015). These types of complex interac-
tions would require several extra parameters and without additional
experimental data, the immune parameters cannot be accurately esti-
mated. Thus, further studies are necessary in order to develop more
complex models and better characterize rotavirus replication.
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