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1 Introduction

Since the introduction of market reforms, beginning in 1978, the Chinese economy has

exhibited phenomenal growth, arguably qualifying it as another East Asian “miracle”.

However, the unprecedented economic boom at the national level conceals uneven

growth patterns across provinces. Although economic reforms have been beneficial

to all regional economies in China, in general, those located along the coast of China

have been able to grow much faster than interior provinces in the Central and Western

parts of the country.

The issue of uneven regional development in China has attracted a considerable

amount of empirical research (for an overview, see Kanbur and Zhang 2001, and Lu

and Wang 2002). Studies usually focus on income inequality across provinces (inter-

provincial inequality), but also often group provinces in larger regions (e.g., coastal

and interior) and examine inequality within a given region (intra-regional inequality)

or between regions (inter-regional inequality). Despite differences in methodology,

data sources, and time periods, most authors agree that inter-provincial disparities

narrowed initially over the 1980s but have widened since the late 1980s and early

1990s. Evidence in favor of convergence in the 1980s appears to be largely attributed

to declining intra-regional inequality within the group of coastal provinces. By con-

trast, the inter-regional inequality, especially between the coastal and interior regions,

has been increasing since the start of the market transition in 1978, and has become

much more pronounced over the 1990s, thereby contributing to the widening of the

income gap across provinces (Jian et al. 1996; Lee 2000; Fujita and Hu 2001; Yao

and Zhang 2001).

A broad range of reasons have been forwarded to explain the growing regional

discrepancies in China. The advantageous geographical location of coastal provinces

enabled them to engage in international trade, whereas interior provinces largely failed

to integrate into the world economy and thus benefit from globalization. Besides the

varying degree of openness across provinces, the uneven distribution of domestic and

foreign capital investment has been identified as a major determinant of regional

inequality. Coastal areas were the main beneficiaries of the large inflows of foreign

direct investment as well as domestic capital (Zhang and Zhang 2003). In the labor-

intensive export industries, foreign capital was combined with cheap labor supplied
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either via migration from interior provinces or from rural surplus labor within the

coastal provinces (Fu 2004; Fujita and Hu 2001). A more developed infrastructure

and higher levels of human capital in the coastal provinces gave a further boost to

growth (Fleisher and Chen 1997; Demurger 2001).

The preferential policies extended to coastal provinces by the central government

in the context of an unbalanced coast-oriented development strategy have also been

blamed for the discrepancy in growth rates and income levels across regions (De-

murger et al. 2002; Lu and Wang 2002). These policies included tax breaks as

well as permission to operate special economic zones that offered lucrative business

conditions to foreign firms and joint-ventures, and facilitated the inflow of dispropor-

tionately large amounts of foreign capital. Aside from spill-over effects among coastal

provinces, the rapid growth along the coast largely failed to spread to the interior

regions, resulting in increases in regional inequality (Ying 2000; Fu 2004).

The objective of this paper is to determine the sources of growth at the provin-

cial level in China and to examine their impact on regional inequality. It differs

from previous works in two major aspects. First, the study uses a nonparamet-

ric production-frontier approach allowing a more comprehensive decomposition of

growth. Second, we examine inter-provincial convergence by analyzing the entire

distribution of provincial output per worker and its dynamics over the sample period.

The nonparametric production-frontier approach to decomposing productivity

growth was started by Färe et al. (1994). Since then, many papers have used non-

parametric production-frontier methods with cross-country data (Kumar and Russell

2002; Henderson and Russell 2005; Los and Timmer 2005; Henderson and Zelenyuk

2007). A major benefit of this type of approach is that there is no need to specify a

functional form for the technology, no need to make the assumption that technologi-

cal change is neutral, or to make assumptions about market structure or the absence

of market imperfections. The purpose of using this approach here is to address the

debate in the empirical literature. Specifically, the question of whether the rapid

economic growth of China over the reform period was driven primarily by total fac-

tor productivity growth or by factor accumulation. This issue has been addressed in

the literature using national-level (Borensztein and Ostry 1996; Hu and Khan 1997;

Young 2000; Wang and Yao 2003), sectoral-level (Jefferson, Rawski and Zheng 1996;
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Kong, Robert and Wan 1999; Fu 2005) and provincial-level (Fleisher and Chen 1997;

Ezaki and Sun 1999; Arayama and Miyoshi 2004; Miyamoto and Liu 2005) data.

Virtually all of these studies use the conventional growth-accounting method to

estimate total factor productivity growth as a residual of output growth after sub-

tracting the contribution of relevant inputs. This type of approach however relies

crucially on the assumptions that the form of the production function is known and

that there is neutral technological change. In this study, we instead use the non-

parametric production-frontier method given in Henderson and Russell (2005) which

avoids the limitations of the conventional approach and allows us to decompose the

growth of labor productivity into four components attributable to technological catch-

up (movements towards the frontier), technological change (shifts in the frontier), and

physical and human capital accumulation (movements along the frontier).

We estimate the contribution to growth of each of the four components for 28

Chinese provinces over the period 1978-2000. In addition, we split the sample into

two sub-periods to find evidence for a turning point proposed in the literature (Fujita

and Hu 2001; Lu and Wang 2002) regarding the rise of regional inequality. Moreover,

we try to shed light on the possible sources for regional disparities by estimating the

relative importance of each growth component for different sub-samples categorized

according to geographical location (coastal, interior) and level of output per worker

(rich, middle, poor).

The second feature of this study is that it examines inter-provincial convergence

by analyzing the entire distribution of provincial output per worker and its dynamics

between 1978 and 2000. Previous studies rely mostly on estimating the relationship

between the growth rate and the initial output level to detect convergence. However,

this approach focuses only on the first moment of the labor productivity distribution,

and thus provides only a partial view of the convergence process. It could also lead to

biased results when the distribution of labor productivity is multimodal (Quah 1993,

1996, 1997).

For completeness, we first follow a regression approach and estimate whether

each of the four growth components contributed to convergence across provinces

over the sample period. Then we examine the entire distribution of provincial labor

productivity and analyze the effects of the four growth components on the evolution
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of the distribution over the 1978-2000 period. In addition, we apply nonparametric

kernel methods to test formally for statistical significance of the relative contribution

of each of the four components to changes in the shape of the distribution.

Our results reveal several findings. First, the distribution of output per worker

across Chinese provinces is multimodal with relatively few provinces in the upper

modes and the majority of provinces in the larger “poor” mode. However, over the

sample period several poor provinces were able to catch-up and move into the “rich”

modes. Second, technology change is decidedly nonneutral, with little improvement

at very low capital to effective labor ratios and rapid expansion at high capital to

effective labor ratios. Third, physical capital accumulation has been the major driving

force behind the growth performance of Chinese provinces over the reform period.

Fourth, capital deepening helped drive convergence between provinces. This was

primarily driven by the initially poor coastal provinces that caught up due to intensive

capital deepening coupled with large efficiency improvements. Finally, the initially

rich coastal provinces were able to grow faster because of above-average rates of

technological progress and human capital accumulation. This allowed us to identify

the lack of technological progress and human capital accumulation as key factors

responsible for rising regional disparities in China. These hindered the growth of

poor regions despite their increases in efficiency and capital deepening.

The remainder of the paper is organized as follows: the second and third sections

describe the methodology and data, respectively. Section 4 summarizes the results

and the final section draws conclusions.

2 Methodology

2.1 Data Envelopment Analysis

Following (the nonparametric approach of) Henderson and Russell (2005), we con-

struct China’s production-frontier and the associated efficiency levels of individual

provincial economies (distances from the frontier) by using Data Envelopment Anal-

ysis.1 The basic idea is to envelop the data in the smallest convex cone, where the

1A fully general exposition of this approach, aimed primarily at economists, can be found in Färe
et al. (1995); the management science approach to essentially the same methods began with the
paper by Charnes et al. (1978), who coined the evocative term “Data Envelopment Analysis”.
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upper boundary of this set represents the “best practice” production-frontier. One

of the major benefits of this approach is that it does not require prior specification

of the functional form of the technology. It is a data driven approach, implemented

with standard mathematical programming algorithms, which allows the data to tell

the form of the production function (see Kneip, Park and Simar 1998 for a proof of

consistency for the Data Envelopment Analysis estimator, as well as Kneip, Simar

and Wilson 2003 for its limiting distribution).

Our technology contains four macroeconomic variables: aggregate output and

three aggregate inputs – labor, physical capital, and human capital. Let 〈Yit, Kit, Lit, Hit〉,

t = 1, 2, . . . , T , i = 1, 2, . . . , N , represent T observations on these four variables for

each of the N provinces. We adopt a standard approach in the macroeconomic lit-

erature and assume that human capital enters the technology as a multiplicative

augmentation of physical labor input, so that our NT observations are 〈Yit, Kit, L̂it〉,

t = 1, 2, . . . , T , i = 1, 2, . . . , N , where L̂it = LitHit is the amount of labor input

measured in efficiency units in province i at time t. The constant returns to scale

technology for China in period t is constructed by using all the data up to that point

in time as

Tt =






〈
Y, L̂,K

〉
∈ ℜ3

+ | Y ≤
∑
τ≤t

∑
i

ziτYiτ , L̂ ≥
∑
τ≤t

∑
i

ziτ L̂iτ ,

K ≥
∑
τ≤t

∑
i

ziτKiτ , ziτ ≥ 0 ∀ i, τ





, (1)

where ziτ are the activity levels. By using all the previous years data, we preclude

implosion of the frontier over time. It is difficult to believe that the technological

frontier could implode. Thus, following an approach first suggested by Diewert (1980),

we chose to adopt a construction of the technology that precludes such technological

degradation.

The Farrell (output-based) efficiency index for province i at time t is defined by

E(Yit, L̂it, Kit) = min
{
λ |

〈
Yit/λ, L̂it, Kit

〉
∈ Tt

}
. (2)

This index is the inverse of the maximal proportional amount that output Yit can

be expanded while remaining technologically feasible, given the technology and input

quantities. It is less than or equal to unity and takes the value of unity if and only if

the it observation is on the period-t production-frontier. In our special case of a scalar
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output, the output-based efficiency index is simply the ratio of actual to potential

output evaluated at the actual input quantities.

2.2 Quadripartite Decomposition

To decompose productivity growth into components attributable to (1) changes in

efficiency (technological catch-up), (2) technological change, (3) capital deepening

(increases in the capital-labor ratio), and (4) human capital accumulation, we again

follow the approach of Henderson and Russell (2005). We first note that constant

returns to scale allows us to construct the production-frontiers in ŷ × k̂ space, where

ŷ = Y/L̂ and k̂ = K/L̂ are the ratios of output and capital, respectively, to effective

labor. By letting b and c stand for the base period and current period respectively, we

see, by definition, that potential outputs per efficiency unit of labor in the two periods

are given by yb(k̂b) = ŷb/eb and yc(k̂c) = ŷc/ec, where eb and ec are the values of the

efficiency indexes in the respective periods as calculated in (2) above. Accordingly,

ŷc
ŷb

=
ec
eb

·
yc(k̂c)

yb(k̂b)
. (3)

Let k̃c = Kc/(LcHb) denote the ratio of capital to labor measured in efficiency

units under the counterfactual assumption that human capital had not changed from

its base period and k̃b = Kb/(LbHc) the ratio of capital to labor measured in effi-

ciency units under the counterfactual assumption that human capital were equal to

its current-period level. Then yb(k̃c) and yc(k̃b) are the potential output per efficiency

unit of labor at k̃c and k̃b using the base-period and current-period technologies, re-

spectively. By multiplying the numerator and denominator of (3) alternatively by

yb(k̂c)yb(k̃c) and yc(k̂b)yc(k̃b), we obtain two alternative decompositions of the growth

of ŷ
ŷc
ŷb

=
ec
eb

·
yc(k̂c)

yb(k̂c)
·
yb(k̃c)

yb(k̂b)
·
yb(k̂c)

yb(k̃c)
, (4)

and
ŷc
ŷb

=
ec
eb

·
yc(k̂b)

yb(k̂b)
·
yc(k̂c)

yc(k̃b)
·
yc(k̃b)

yc(k̂b)
. (5)

The growth of productivity, yt = Yt/Lt, can be decomposed into the growth of
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output per efficiency unit of labor and the growth of human capital, as follows:

yc
yb

=
Hc

Hb

·
ŷc
ŷb
. (6)

Combining (4) and (5) with (6), we obtain

yc
yb

=
ec
eb

·
yc(k̂c)

yb(k̂c)
·
yb(k̃c)

yb(k̂b)
·

[
yb(k̂c)

yb(k̃c)
·
Hc

Hb

]

(7)

≡ EFF × TECHc ×KACCb ×HACCb,

and

yc
yb

=
ec
eb

·
yc(k̂b)

yb(k̂b)
·
yc(k̂c)

yc(k̃b)
·

[
yc(k̃b)

yc(k̂b)
·
Hc

Hb

]
(8)

≡ EFF × TECHb ×KACCc ×HACCc.

These identities decompose the growth of labor productivity in the two periods

into changes in efficiency, technology, the capital-labor ratio, and human capital ac-

cumulation. As shown in Figure 2, the decomposition in (4) measures technological

change by the shift in the frontier in the output direction at the current-period capi-

tal to effective labor ratio, whereas the decomposition in (5) measures technological

change by the shift in the frontier in the output direction at the base-period capital

to effective labor ratio. Similarly, (7) measures the effect of physical and human cap-

ital accumulation along the base-period frontier, whereas (8) measures the effect of

physical and human capital accumulation along the current-period frontier.

These two decompositions do not yield the same results unless the technology is

Hicks neutral. In other words, the decomposition is path dependent. This ambiguity

is resolved by adopting the “Fisher Ideal” decomposition, based on geometric averages

of the two measures of the effects of technological change, capital deepening and

human capital accumulation and obtained mechanically by multiplying the numerator

and denominator of (3) by
(
yb(k̂c)yb(k̃c)

)1/2 (
yc(k̂b)yc(k̃b)

)1/2

:

yc
yb

= EFF × (TECHb · TECHc)1/2 (9)

×(KACCb ·KACCc)1/2 × (HACCb ·HACCc)1/2

≡ EFF × TECH ×KACC ×HACC.
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2.3 Comparison of Unknown Densities

Our analysis of the change in the productivity distribution exploits nonparametric

kernel methods to test formally for statistical significance of differences between (ac-

tual and counterfactual) distributions. Specifically, we follow Kumar and Russell

(2002) and choose the test developed by Li (1996) which tests the null hypothesis

H0 : f(x) = g(x) for all x, against the alternative H1 : f(x) 6= g(x) for some x.2

This test, which works with either independent or dependent data is often used, for

example, when testing whether income distributions across two regions, groups or

times are the same. The test statistic used to test for the difference between two

unknown distributions (which goes asymptotically to the standard normal, as shown

by Fan and Ullah 1999), predicated on the integrated square error metric on a space

of density functions, M(f, g) =
∫
x
(f(x) − g(x))2 dx, is

J =
Nb

1

2M

σ̂
∼ Normal(0, 1), (10)

where

M =
1

N2b

N∑

i=1

N∑

j=1

j 6=i

[
K

(
xi − xj

b

)
+K

(
zi − zj
b

)
−K

(
zi − xj
b

)
−K

(
xi − zj
b

)]
,

σ̂2 =
1

N2bπ
1

2

N∑

i=1

N∑

j=1

[
K

(
xi − xj

b

)
+K

(
zi − zj
b

)
+ 2K

(
xi − zj
b

)]
,

K is the standard normal kernel and b is the optimally chosen bandwidth.3

3 Data

At the provincial level, China is divided into 33 regions, including 22 provinces,

five autonomous regions (ethnic minority areas in West and Southwest China), four

metropolises (e.g., Beijing and Shanghai), and two special administrative regions

(Hong Kong and Macau – see Figure 1). For simplicity, we will use the terms regions

and provinces interchangeably. The data set includes output, labor, capital, and

2The explanation that follows assumes that {x} and {z} are two equally sized samples of size N ,
taken from f and g respectively. The extension to unequal sample sizes is trivial.

3For further details see Fan and Ullah (1999), Li (1996), and Pagan and Ullah (1999).
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human capital variables for 28 Chinese provinces over the period 1978-2000.4 The

data is drawn from official publications of the Chinese statistical agency, the National

Bureau of Statistics. The two major sources are the Comprehensive Statistical Data

and Materials on 50 Years of New China and various issues of the China Statistical

Yearbook.5

3.1 Output and Labor

Nominal GDP is deflated by a province-specific price index, with 1952 as the base

year.6 The price index for each province obtained from Wu (2004) is constructed using

nominal GDP values and real GDP growth rates, and corresponds approximately to

the average of the retail price index and the GDP deflator.

In absence of data on the number of hours worked at the regional level in China,

we follow previous studies in using the number of employees in a given year as a proxy

for the labor force.

3.2 Capital Stock

The capital stock of each province is estimated using the perpetual inventory method.

Data on investment in fixed assets is available for all provinces in our sample for

the period 1952-2000. Although investment deflators have been constructed at the

national level, the lack of data prevents us from computing their equivalents at the

regional level. Therefore, we deflate fixed investment using the same province-specific

price index as for GDP with 1952 as the base year.

To construct the capital stock from investment flows we adopt a depreciation rate

of 4% as in Chow (2002) and assume that it is constant across provinces.7 To obtain

4Hainan and Tibet were dropped from the data set due to incomplete data. The city of Chongqing
which received provincial status in 1997 is still treated as part of Sichuan. Hong Kong and Macau
are excluded because they came under Chinese control in 1997 and 1999, respectively.

5Due to a lack of alternatives, the majority of empirical studies on China’s economy use official
statistics. The reliability of Chinese data has often been questioned, however, the extent of data
falsification for political purposes in China appears to be limited (Holz 2003). Furthermore, Rawski
(2001) and Chow (2002) assert that despite some problems, the official figures represent the most
plausible measures of aggregate variables in China and are accurate enough for econometric analysis.

6The GDP data can be thought of as being measured in constant 1952 or 1978 prices, since the
price level in China changed little between 1952 and the start of market reforms in 1978.

7This is the average depreciation rate of fixed assets of state-owned enterprises over the period
1952-1992 (China Statistical Yearbook 1997).
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initial values for the capital stock of each province, we use a procedure similar to

Nehru and Dhareshwar (1995) and Hall and Jones (1999). Accordingly, the initial

value of the 1952 capital stock for province i is constructed as

Ki,1952 =
Ii,1952

(δ + gi)
, (11)

where I denotes the real value of fixed investment, δ is the depreciation rate and

gi is the average growth rate of real fixed investment between 1952 and 1977 for

province i. The capital stock for each province is computed for the 1952-2000 period.

The relatively low initial value of capital in 1952 and the high rates of investment

ensure that the estimates of the capital stock for our sample period 1978-2000 are

not sensitive to the 1952 benchmark value.

3.3 Human Capital

Previous studies on Chinese regional growth that incorporate human capital in the

production function use either enrollment rates or the number of graduates at a

certain level of education as proxies for the quality of labor.8 Recently, Wang and

Yao (2003) derived a time series of China’s human capital stock in terms of the average

years of schooling based on the methodology of Barro and Lee (2000). They used

the perpetual inventory method with the number of graduates at different schooling

levels representing the annual changes in the human capital stock. However, since

the initial level of human capital was estimated using comparable data from India,

their method is difficult to replicate at the regional level in China.

Instead, we estimate the average years of schooling using data from the three most

recent national censuses conducted in 1982, 1990 and 2000. Census data includes the

number of graduates by province at every level of education as well as the working-

age population in the age group 15-64. The average years of schooling for each of the

three years in which a census took place was estimated by

ǫit =
(6G1it + 9G2it + 12G3it + 15.5G4it)

nit
, (12)

8For instance, Fleisher and Chen (1997) use the annual flow of university graduates as a proxy
for human capital. Alternatively, Chen and Fleisher (1996) and Jones, Li and Owen (2003) employ
the number of high school students as a share of all people of high-school age.
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where Gjit is the number of graduates in year t in province i, with j being the highest

level of education attained, j = 1 for primary, 2 for junior secondary, 3 for senior

secondary and 4 for tertiary level. nit denotes the population in the age group 15-64

in year t in province i. The data on the number of graduates at each educational

level is thus weighted by the length of the respective schooling cycles and divided by

the working-age population to produce the average years of schooling ǫ.9 The average

years of schooling for the remaining periods are obtained by interpolation. However,

they correspond closely to the numbers reported by Zhang, Zhao, Park and Song

(2006) who rely on data from household surveys conducted in several provinces over

the 1988-2001 period.

To construct a human capital index using the average years of schooling, we adopt

the approach of Bils and Klenow (2000) and define labor in efficiency units in province

i at time t by

L̂it = HitLit = h(ǫit)Lit = ef(ǫit)Lit, (13)

where

f(ǫit) =
θ

1 − ψ
ǫ1−ψit . (14)

The parameter ψ measures the curvature of the Mincer (1974) earnings function,

whereby a larger value is associated with a higher rate of diminishing returns to school-

ing. Bils and Klenow (2000) estimate that ψ = 0.58 using data from Psacharopoulos

(1994) for a sample of 56 countries (including China). Since the rate of return to

education is
d lnh(ǫit)

dǫit
= f ′(ǫit) =

θ

ǫψit
, (15)

the parameter θ = 0.32 so that the average of θ/ǫψit equals the average rate of return

to education from the Psacharopoulos (1994) sample.10

9The schooling cycles were assumed to be 6 years for primary, 9 years for junior secondary, 12
years for senior secondary, and 15.5 years for tertiary education. The number of graduates at the
tertiary level includes those with a junior college degree (15 years) and those with a university degree
(16 years). Because the data did not us allow to separate these two groups, the average number of
years was adopted as the length of the tertiary education.

10This is an oversimplification of the Bils and Klenow (2000) model. Their construction of current
human capital also incorporates (positive) externalities from past capital accumulation of human
capital (as first proposed in Borjas 1992).
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4 Results

4.1 Production-Frontier and Efficiency

China’s production-frontier in 1978, 1990, and 2000 along with scatter plots of ŷ vs.

k̂ are presented in Figure 3. The single kink on each curve indicates that there is

only one efficient provincial economy, Shanghai, which defines the frontier in each of

the three years. Note that the production-frontier shifted up from 1978 to 2000 but

not by the same proportion for every value of k̂ implying that technological change

was non-neutral. It is evident from the graph that, for the majority of provinces with

lower ratios of capital to efficient labor, the production-frontier is almost identical

in 1978, 1990, and 2000. The largest shifts of the frontier occur for the few regions

with a high degree of capitalization, including the three metropolises with provincial

status (Beijing, Shanghai and Tianjin).

To assess the efficiency of provincial economies we examine their location relative

to the frontier. The efficiency index of each province in 1978 and 2000 is reported in

the first two columns of Table 1. On average,11 China’s provincial economies moved

closer to the best practice frontier over the 1978-2000 period. This is not surprising

given that the transition towards a market economy in China witnessed the emergence

of privately-managed firms, export-oriented corporations, and foreign joint-ventures

that were more efficient in their use of inputs than state-owned enterprises. The new

firms had clearly defined property rights, operated under hard-budget constraints,

and responded to market incentives whereas state-owned enterprises were plagued by

overproduction, misallocation of resources, and inefficient government subsidies (Shiu

2002).

The results also reveal that the largest efficiency gains were achieved in the second

half of the reform period.12 Tables 2 and 3 show that between 1978 and 1989, efficiency

improved by only 3% as opposed to 17% between 1990 and 2000. The reason is that

11In addition to the arithmetic average, we also include the weighted average. This method,
developed in Färe and Zelenyuk (2003), allows one to weight the efficiency scores by the relative
output of the province.

12We chose 1990 as a breaking year for two reasons. It is clearly a turning point in the rise of
regional inequality in China (Fujita and Hu 2001; Lu and Wang 2002). Moreover, in the aftermath
of the Tiananmen Square incident economic growth stumbled, and thus 1990 marks a watershed
between two periods of rapid growth.
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incremental measures to reform state-owned enterprises were initiated only in the

mid-1980s and were soon put on hold or even reversed when serious macroeconomic

imbalances coupled with political discontent led to massive protests on Tiananmen

Square in 1989. Starting in 1992, a new round of economic liberalization promoted

the privatization of state enterprises, the gradual elimination of price controls, the

creation of stock exchanges, and an enhanced role for trade and foreign investment,

all of which contributed to higher efficiency.

From looking at the province-specific estimates, it is evident that the improve-

ments in efficiency vary widely across regions. Shanghai, the richest regional economy

in China, is also the most efficient one. With an efficiency score of 1.00, it is the

only province located on the best practice frontier throughout the 1978-2000 period.

Whereas the wealthy province of Guangdong was already highly efficient at the start

of economic reforms and its efficiency score changed little in the following two decades,

other coastal provinces including Jiangsu, Zhejiang and Fujian were able to catch up

with large efficiency improvements. By contrast, poor provinces in Southwest China

such as Guizhou, Sichuan or Yunnan were far away from the best practice frontier in

1978, and experienced only modest increases in efficiency by 2000.

These results are in line with the findings of several previous works. Wu (1995)

and Ao and Fulginiti (2003) report provincial efficiency estimates for the periods

1985-1991 and 1978-1998, respectively. Although both studies use parametric frontier

techniques, do not include human capital, and focus on shorter time periods, their

estimates are similar to ours, indicating that Shangahai and Guangdong are at the

top and Guizhou is at the bottom of the efficiency rankings.

Technological catch-up, represented by movements towards the frontier, could

result in convergence in output per worker across regions if poor provinces benefit

more from efficiency improvements than rich ones. To examine this issue, we split

the sample into rich and poor provinces. Using the distribution of output per worker

across provinces in the base period and current period (see Figure 4), we categorize

rich provinces as those included in the upper modes in each of the two time periods.

The remaining provinces concentrated in the larger lower mode are classified as poor.

The averages of the efficiency indexes for the sub-samples are reported in the first

two columns of Table 4. Clearly, wealthy provinces are closer to the frontier than
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poor ones throughout the sample period. This is echoed by the size of the weighted

average of the efficiency scores for all provinces relative to that of the simple average.

Given that the weight of the efficiency score is determined by the relative output

of the province, it is obvious that the larger economies are more efficient. By 2000,

many poor provinces fail to reach even the 1978 efficiency levels of the rich provinces.

Furthermore, rich provinces show larger increases in efficiency than poor ones. The

efficiency gains of the rich improved by 24% while that of the poor was merely 17%.

This suggests that changes in efficiency may be leading to a widening of the regional

gap.

We also categorized provinces as rich (poor) if their output per worker was above

(below) the median in each year. We obtained two sub-samples with 10 regions each

and a middle group consisting of 8 provinces that switched from rich to poor (or

vice versa). With this classification, the improvement in efficiency was 16% for the

rich and 8% for the poor provinces. However, the group of provinces that crossed

the median output per worker saw their efficiency rise (33%) by more than the rich

regions.

Lastly, we split the sample into coastal and interior provinces. The efficiency

averages displayed in Table 4 indicate that the provinces along China’s coast are

more efficient and improved their efficiency by larger amounts than the provinces of

Central and Western China. This result, supported by previous studies (Wu 1995;

Ao and Fulginiti 2003), was to be expected given that the majority of rich provinces

are located along the coast. Moreover, the coastal provinces with output per worker

below the 1978 median value were also the ones that managed to catch up in terms of

efficiency due to their advantageous geographical location that allowed them to benefit

most from the opening of China to foreign trade and investment. This corresponds to

convergence within the group of coastal provinces reported in the literature (Fujita

and Hu 2001).

4.2 Quadripartite Decomposition of Labor Productivity

To gain a more detailed understanding of the factors that contributed to the growth

performance of China’s provinces, we decompose productivity growth into compo-

nents attributable to (1) efficiency changes, (2) technological changes, (3) capital
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deepening, and (4) human capital accumulation. The growth in labor productivity

of each province is shown in the third column of Tables 1-3. It is evident that over

the entire sample period Chinese provinces experienced stunning increases in produc-

tivity. On average, regional output per worker in China quadrupled over a period of

22 years, rivaling the performance of the East Asian “growth miracles”. At one end

of the spectrum, the coastal provinces Zhejiang and Jiangsu saw their productivity

grow almost tenfold, at the other end, the productivity of the landlocked Western

province of Qinghai less than doubled. As can be seen from Table 4, rich and coastal

provinces have higher growth rates over the sample period as well as over each of

the two sub-periods. The difference between the growth rates of the rich and poor

provinces in 1990-2000 is much larger than in 1978-1989, pointing towards increasing

divergence between the two groups in the second decade of reforms.

The contributions of changes in efficiency, technological change, capital deepen-

ing, and human capital accumulation for the entire sample period are displayed in the

last four columns of Tables 1-3. It is obvious that physical capital accumulation is by

far the major driving force behind the spurt in labor productivity at the provincial

level in China confirming the findings of previous studies (Wang and Yao 2003; Wu

2003; Arayama and Miyoshi 2004; Miyamoto and Liu 2005). The average contribu-

tion of efficiency change is 20% followed by technological change and human capital

accumulation, each less than 6%.

Several individual economies deserve special attention. For the two rich metropolises,

Beijing and Shanghai, the contribution of efficiency is negligible because their economies

were either close to or on the frontier at the start of the sample period. Although

physical capital accumulation contributes the most, the percentage increase is below

the provincial average. Thus, capital accumulation cannot solely explain their above

average change in productivity. Their growth is also strongly driven by technolog-

ical change and human capital accumulation. The contribution of each of the two

components is well above the provincial average. This is most likely the result of a

high concentration of top national universities and research institutes in these cities.

Moreover, their high level of urbanization ensures that school enrollment rates are

higher than in provinces with a predominantly rural population (Heckman 2005).

The provinces Fujian, Zhejiang and Jiangsu were not among the richest regions
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at the start of the reform period but exhibited phenomenal growth over the following

two decades. They are located along the coast between Shanghai and Hong Kong,

and across from Taiwan, which made them a magnet for foreign direct investment

from abroad. This was facilitated by the creation of special economic zones in these

provinces offering tax breaks, relaxed labor regulation and duty-free imports of in-

puts to foreign firms and joint-ventures. In addition, fiscal decentralization and the

preferential policies of the central government allowed coastal provinces to keep large

amounts of their fiscal resources which were used to support further industrialization

(Tochkov 2006). It is therefore not surprising to see that their growth spurts resulted

largely from physical capital accumulation.

Interestingly, technological innovation does not represent any significant contri-

bution to growth for these three provinces. However, the inflow of foreign capital

and expertise, and the closure of inefficient state-owned enterprises, seems to have

brought above-average improvements in efficiency. In fact, Shiu (2002) shows that

the foreign-funded enterprises and state-owned enterprises of the heavy industry sec-

tor in the coastal provinces were on average more efficient than their counterparts

in Central and Western China. Furthermore, Wu (2000) provides empirical evidence

for technological catch-up between Fujian and Guangdong, and the highly efficient

neighboring economies of Hong Kong and Taiwan.

A similar story can be told about the wealthy coastal province Guangdong. It is

located next to and has the closest economic ties with Hong Kong, has the largest

number of special economic zones, and absorbed large amounts of investment from

abroad. Guangdong has received preferential treatment from the central government

and has always been at the forefront of any economic reforms. Its eightfold increase

in labor productivity over the sample period is attributable solely to physical capital

accumulation which has the highest contribution to growth of all provinces. Neither

technological change, nor human capital accumulation are above average, and given

that Guangdong was very close to the frontier at the start of the reforms precludes

large increases in efficiency.

Two groups of provinces that showed below-average productivity growth are also

noteworthy. Liaoning and Jilin are located in the Northeast, home to the traditional

industrial base of socialist China. The large amount of old state-owned enterprises
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has prevented them from catching up. Their growth comes primarily from above-

average efficiency improvements resulting from reforms and privatization of the state

sector, and in the case of Liaoning (a coastal province) from foreign investment. The

other group includes Gansu, Qinghai and Ningxia, three isolated provinces in the

Northwest. Their labor productivity only doubled over a period of 22 years with

technological change and physical capital accumulation both contributing well below

the provincial average. Growth here was heavily driven by large improvements in

efficiency, and in the case of Ningxia and Gansu, by human capital accumulation. The

importance of human capital for these provinces is surprising, but has been confirmed

in prior studies (Arayama and Miyoshi 2004; Miyamoto and Liu 2005). We can only

speculate, but it could be that the introduction of compulsory secondary education

in China boosted enrollment rates dramatically in these two provinces.

Table 4 shows the average changes in productivity and the quadripartite decom-

position for sub-samples of provinces. Regardless of the categorization method, rich

provinces experienced increases in labor productivity due to faster-than-average rates

of technological progress as reflected in shifts of the frontier documented above. The

contribution of human capital accumulation is also well above average. The picture

is very similar for the group of coastal provinces. The weaker growth performance of

poor and interior provinces is attributable to the lack of technological progress and

below-average human capital accumulation, although in terms of efficiency improve-

ments, they were close to the rich coastal provinces. The middle group of provinces

that managed to cross the median output per worker between 1978 and 2000 experi-

enced productivity gains that were above average and close to that of rich provinces.

This resulted mostly from improvements in efficiency that were larger than any other

group. The quadripartite decomposition for the two sub-periods, 1978-1989 and 1990-

2000, indicate that each of the four components of labor productivity increased much

faster in the second decade which was due to the intensification of economic liberal-

ization and the further opening to foreign trade and investment (Fujita and Hu 2001;

Lu and Wang 2002; Arayama and Miyoshi 2004).
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4.3 Regression Analysis

To examine the impact of growth on the regional income distribution in China, we

regress the change in labor productivity and its four components on the initial level

of output per worker. The estimates are presented in Table 5 and the scatter plots

along with fitted regression lines are displayed in Figures 5-7.

Panel A of Figure 5 illustrates the relationship between labor productivity growth

over the entire sample period and the initial level of output per worker. Although

increases in productivity reflect positive growth for all provinces, there is a wide dis-

persion of growth rates at lower income levels. In contrast, most of the rich provinces

in 1978 recorded above-average growth resulting in a positive slope of the regression

line. The slope, while not statistically significant, reflects the view that the market

transition in China has led to a more unequal provincial income distribution. In par-

ticular, it is well documented that the income gap across provinces has been widening

since the late 1980s and early 1990s after an initial period of convergence in the early

years of reform (Zhang, Liu, and Yao 2001; Lu and Wang 2002). The results of our

regression analysis for the two sub-periods support these findings. The regression

line for the 1978-1989 period (Panel A in Figure 6) slopes (insignificantly) downward

suggesting that poor provinces were catching up with the rich, whereas the positive

(insignificant) slope for the 1990s (Panel A in Figure 7) suggests regional divergence

in labor productivity.

Panel B, in Figures 5-7, shows the relationship between the contribution of effi-

ciency to productivity growth and the initial level of output per worker. The scatter

plots do not provide a clear pattern due to the wide dispersion of efficiency changes

for all levels of income. This suggests that for the entire sample period, technolog-

ical catch-up did not play a major role in equalizing income levels across Chinese

provinces.

The link between productivity growth attributable to technological change and

the initial level of output per worker is shown in Panel C. The regression line has a

statistically significant positive slope in each case, implying that technological change

is associated with income divergence across regions. From the scatter plot it is evident

that the majority of provinces did not achieve any technological change and the

positive slope is largely driven by a few rich provinces that were able to benefit from
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new technologies.

The only component of productivity growth that minimized regional disparities

appears to be the accumulation of physical capital. As shown in Panel D, the regres-

sion line has a statistically significant (at the 10% level) negative slope signaling that

provinces with lower levels of income in 1978 recorded higher productivity growth

stemming from capital accumulation than did rich provinces. This is equally true in

the two sub-periods where the slope coefficients are both statistically significant at

the 5% level.

Lastly, Panel E displays the relationship between the contribution of human cap-

ital accumulation and the initial level of output per worker. The slope coefficient

suggests that human capital accumulation led to a the widening of the provincial

income gap. This result also holds in both sub-periods. Significant and growing dis-

parities in educational attainment between coastal and interior provinces have been

reported by Zhang and Zhang (2003) and Wang and Yao (2004). A possible explana-

tion is that due to fiscal decentralization during the reform period, interior provinces

received smaller amounts of fiscal transfers that were insufficient to support necessary

investment in human capital. In addition, Fleisher and Chen (1997) find that the

rates of return to investment in higher education in interior provinces are higher than

in the coastal region. However, the low rates of return on infrastructure investment

create an environment that is not attractive enough to prevent human capital from

migrating to the coast, thus exacerbating regional inequality.

In summary, we have seen that although there was some hint of convergence early

in the sample, powered by capital deepening, there was a strong divergence in the end

of the sample. Although capital accumulation continued to attempt to equate incomes

across provinces, the effects of technological change and human capital accumulation

led to further distance between the rich and poor. However, some of the initially

poor, coastal provinces, were able to capitalize on their location and became rich

provinces by attracting large amounts of physical capital. Interestingly, these graphs

suggest that efficiency did little, if anything, to equalize incomes.

19



4.4 Productivity Distributions

Although the regression analysis in the previous section provides important clues

about the impact of the four growth components on the regional income gap in

China, we reexamine the issue of convergence by comparing the distributions of labor

productivity. This is necessary because any conclusions about convergence based on

the first moment of the distribution could be misleading, particularly in cases when

the distribution is multimodal (Quah 1993, 1996, 1997). The labor productivity

distributions (which are nonparametric kernel-based density estimates) appear in

Figure 4. The solid and dashed curves represent the distributions of output per

worker in the base and current period, respectively, with their corresponding mean

values shown as vertical lines.

It is evident that the distribution in each year is in fact multimodal, underlying the

importance of conducting a distributional analysis. However, a profound change in

the shape of the distribution occurred over the sample period. In 1978, the majority

of provinces were concentrated around a relatively low value of output per worker.

Close to this “poor” mode we observe several smaller modes at higher income levels.

By 2000, the “poor” mode shifted to the right, resulting in a higher mean labor

productivity but also an increase in the variance of output per worker. The reason

for this increase is that some poor provinces failed to grow as fast, whereas others,

such as the middle group of coastal provinces, were able to catch up with regions

considered rich in 1978. Furthermore, the relatively small but distinct “rich” modes

of 1978 moved far to the right of the “poor” mode as indicated by the long tail

of the distribution in 2000. In other words, a few rich provinces achieved higher

growth which led to a widening of the income gap between them and the majority of

provinces. This is consistent with the positive slope of the regression line in Panel A

of Figure 5.

By using the quadripartite decomposition of productivity growth, we can explore

the role of each of the four components in the transformation of the productivity

distribution over the sample period. For this purpose we adhere to the methodology

of Henderson and Russell (2005) and rewrite (9) as follows:

yc = (EFF × TECH ×KACC ×HACC) × yb. (16)
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Accordingly, the labor productivity distribution in the current period can be con-

structed by consecutively multiplying the labor productivity in the base period by

each of the four components. To isolate the impact of each component, we create

counterfactual distributions by introducing each of the components in sequence. For

instance, we assess the shift of the labor productivity distribution due solely to effi-

ciency changes by examining the counterfactual distribution of the variable

yE = EFF × yb, (17)

assuming no capital deepening, technological change or human capital accumulation.

These counterfactual distributions are shown as dotted curves in Panel A of Figures 8-

10 along with the actual distributions in the base and current periods. The moderate

loss of probability mass at the “poor” mode, for the entire sample period, and the

gains in the probability mass at the “rich” modes reflect the fact that some of the poor

provinces in 1978 were able to move closer to the production-frontier by 2000. This

result is driven by changes in the second sub-period. Panel A of Figure 9 shows that

efficiency changes at the beginning of the sample led to an increase in the probability

mass of the “poor” mode, while changes in efficiency led to a large decrease in the

mass of the “poor” mode towards the end of the sample (Panel A of Figure 10).

However, the small shift in the mean labor productivity (the vertical dotted line),

in each figure, indicates that improvements in efficiency played a minor role in the

increase of the average output per worker.

The counterfactual distribution of the variable

yEK = (EFF ×KACC) × yb = KACC × yE, (18)

drawn in Panel B of Figures 8-10, isolates the joint effect of efficiency changes and

capital deepening on the base period distribution. The large increase in the mean

labor productivity provides strong evidence that capital accumulation is the primary

driving force in increasing output per worker. Furthermore, it is obvious that by

introducing capital deepening, the counterfactual distribution becomes almost iden-

tical to the current period distribution. The prominent “poor” and “rich” modes are

replaced by a wide lower mode and a relatively short tail at higher income levels.

This reflects the equalizing effect of capital deepening across provinces.
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The additional effect of human capital accumulation on the distribution of yEK

can be observed by successfully multiplying HACC:

yEKH = (EFF ×KACC ×HACC) × yb = HACC × yEK. (19)

The resulting counterfactual distributions are shown in Panel C of Figures 8-10.

Besides a minor increase in the mean productivity, the distribution is almost identical

to that in Panel B. The only visible change is the slightly longer upper tail of the

distribution indicating that human capital accumulation has more than proportionally

benefited rich provinces and has thus contributed to provincial divergence. The effect

of the last component, technological change, can be deduced from comparing the

counterfactual distribution of yEKH and the actual distribution in 2000. As with

human capital accumulation, the only contribution of technological change seems to

be an additional extension of the tail of the distribution towards higher levels of

income resulting in a higher mean labor productivity and further divergence.13

To complement the counterfactual distributions, we perform formal tests for sta-

tistical significance of differences between the actual and counterfactual distributions

as detailed in the methodology section. The first test in Table 6 indicates that the

distributions in 1978 and 2000 are significantly different at the 1% significance level.

The next four tests compare the actual distribution in 2000 with the counterfactual

distributions, assuming that only one of the four components is introduced each time.

The small changes in the test statistics show that efficiency changes, technological

changes and changes in human capital did little to shift the base period distribution.

However, solely including physical capital decreases the test statistic such that the

p-value = 0.7570. In other words, if only physical capital accumulation is added

to the 1978 distribution, the resulting counterfactual distribution is not significantly

different from the actual 2000 distribution. This confirms our findings above that

13We also performed the distribution analysis using different sequencing combinations. The re-
sults are not sensitive to changes in the sequencing order. The introduction of capital deepening
always leads to a large increase in mean labor productivity, whereas human capital accumulation,
technological change and efficiency improvements contribute only modestly to higher output per
worker. With respect to the transformation of the distribution, it is again capital deepening that
can explain the shift of the probability mass between the base and current periods. Technological
change and human capital accumulation lead only to longer tails and divergence whereas efficiency
leads to distinct modes and mild divergence. These results are available from the authors upon
request.
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capital deepening alone can explain the overall change in the distribution from 1978

to 2000. The remaining tests offer further evidence. In fact, regardless of whether

we test the combined effect of two or three components on the 1978 distribution, un-

less physical capital accumulation is included, the test concludes that the actual and

counterfactual distributions are significantly different from one another. The results

hold for the two sub-periods.

5 Conclusion

In this paper, we attempted to identify the sources of growth for provincial economies

in China and to determine their contribution to increasing regional disparities over

the reform period. Our results indicate that (1) the distribution of output per worker

across Chinese provinces is multimodal with relatively few provinces in the upper

modes and the majority of provinces in the larger “poor” mode. Fortuantely, over

the 22 year period, several “poor” (predominantly costal) provinces moved to the

“rich” modes. (2) Technological change is decidedly nonneutral, with virtually all

progress taking place in the highly capital-intensive region of input space. (3) The

phenomenal growth of Chinese provinces was mainly driven by physical capital accu-

mulation, thus questioning the sustainability of their growth performance. (4) Capital

deepening helped drive convergence between provinces. This was primarily driven by

the intially poor costal provinces catching up due to intensive capital deepening along

with large efficiency improvements. (5) Minimal technological progress and human

capital accumulation are key factors responsible for the regional disparities in China.

This appears to have occured because the initially rich coastal provinces were able

to grow faster because of above-average rates of technological progress and human

capital accumulation. On the other side, poor provinces improved their efficiency and

increased their levels of physical capital, however most were unable to catch up with

the rich because of a lack of technology advances and human capital accumulation.
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Table 1: Percentage change of quadripartite decomposition indexes, 1978-
2000.

Produtivity E − 1 T − 1 K − 1 H − 1
# Province TEb TEc Change × 100 × 100 × 100 × 100

1 Anhui 0.62 0.57 414.2 -8.4 0.0 460.8 0.1
2 Beijing 0.65 0.69 466.1 5.5 43.4 236.2 11.3
3 Fujian 0.66 0.80 780.1 20.0 1.7 568.4 7.8
4 Gansu 0.30 0.53 259.8 78.5 0.8 81.6 10.1
5 Guangdong 0.81 0.79 802.1 -1.8 1.4 757.0 5.7
6 Guangxi 0.51 0.60 337.8 16.8 0.0 274.8 0.0
7 Guizhou 0.34 0.46 240.7 32.0 0.0 158.1 0.0
8 Hebei 0.57 0.70 457.5 23.6 1.6 315.8 6.7
9 Heilongjiang 0.79 0.71 203.3 -10.4 1.5 221.7 3.6

10 Henan 0.46 0.50 371.3 6.9 0.0 332.3 2.0
11 Hubei 0.52 0.63 589.2 22.3 0.9 419.9 7.5
12 Hunan 0.68 0.60 336.0 -11.3 0.0 391.6 0.0
13 Inner Mongolia 0.49 0.66 396.1 34.6 1.9 244.5 5.0
14 Jiangsu 0.66 0.81 920.6 22.6 2.5 655.6 7.4
15 Jiangxi 0.60 0.56 449.4 -6.8 0.0 457.0 5.8
16 Jilin 0.52 0.72 349.9 39.1 1.8 206.6 3.6
17 Liaoning 0.59 0.94 335.3 58.8 3.0 154.6 4.5
18 Ningxia 0.32 0.50 224.1 66.4 2.7 69.9 11.6
19 Sha’anxi 0.45 0.52 331.7 14.8 0.9 245.0 8.0
20 Shandong 0.55 0.69 627.3 24.6 1.7 432.7 7.8
21 Shanghai 1.00 1.00 675.4 0.0 83.1 285.4 9.9
22 Shanxi 0.44 0.55 330.4 25.8 1.2 220.2 5.6
23 Sichuan 0.39 0.43 334.2 11.2 0.0 281.4 2.4
24 Tianjin 0.57 0.84 553.9 47.6 27.2 213.6 11.0
25 Qinghai 0.35 0.47 181.5 35.8 1.8 94.0 5.0
26 Xinjiang 0.41 0.57 535.0 38.5 2.6 327.6 4.5
27 Yunnan 0.47 0.48 324.2 1.7 0.0 286.8 7.9
28 Zhejiang 0.66 0.80 910.3 20.6 2.2 676.9 5.5

Average 0.549 0.646 421.3 19.7 5.5 290.4 5.7
Weighted Average 0.623 0.725
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Table 2: Percentage change of quadripartite decomposition indexes, 1978-
1989.

Produtivity E − 1 T − 1 K − 1 H − 1
# Province TEb TEc Change × 100 × 100 × 100 × 100

1 Anhui 0.62 0.63 94.4 1.1 0.0 92.3 0.0
2 Beijing 0.65 0.71 100.6 9.2 23.5 42.1 4.6
3 Fujian 0.66 0.68 143.8 3.1 0.0 136.5 0.0
4 Gansu 0.30 0.42 48.1 42.4 0.0 4.0 0.0
5 Guangdong 0.81 0.72 181.7 -11.4 0.0 217.8 0.0
6 Guangxi 0.51 0.52 53.0 1.5 0.0 50.7 0.0
7 Guizhou 0.34 0.49 85.3 42.3 0.0 30.2 0.0
8 Hebei 0.57 0.56 85.0 -2.4 0.0 89.6 0.0
9 Heilongjiang 0.79 0.52 50.1 -34.0 0.0 124.8 1.2

10 Henan 0.46 0.52 114.2 12.2 0.0 90.9 0.0
11 Hubei 0.52 0.59 120.9 14.3 0.0 93.2 0.0
12 Hunan 0.68 0.66 73.1 -2.0 0.0 76.7 0.0
13 Inner Mongolia 0.49 0.53 104.1 8.5 0.0 88.1 0.0
14 Jiangsu 0.66 0.57 163.9 -14.2 0.0 207.5 0.0
15 Jiangxi 0.60 0.60 96.8 -0.1 0.0 97.0 0.0
16 Jilin 0.52 0.54 52.5 3.9 0.0 46.7 0.0
17 Liaoning 0.59 0.69 69.2 17.6 4.8 33.5 2.9
18 Ningxia 0.32 0.43 85.3 35.3 12.9 9.0 11.2
19 Sha’anxi 0.45 0.47 104.0 4.0 0.0 96.1 0.0
20 Shandong 0.55 0.54 123.9 -2.1 0.0 128.9 0.0
21 Shanghai 1.00 1.00 103.6 0.0 36.7 42.7 4.4
22 Shanxi 0.44 0.42 85.2 -4.5 0.0 93.9 0.0
23 Sichuan 0.39 0.40 85.4 4.2 0.0 77.9 0.0
24 Tianjin 0.57 0.62 80.5 8.3 14.6 39.0 4.7
25 Qinghai 0.35 0.36 47.3 4.1 4.4 30.8 3.5
26 Xinjiang 0.41 0.42 152.2 3.2 0.5 131.5 5.0
27 Yunnan 0.47 0.57 96.1 22.3 0.0 60.4 0.0
28 Zhejiang 0.66 0.63 158.3 -5.5 0.0 173.3 0.0

Average 0.549 0.565 95.4 4.6 3.2 78.7 1.3
Weighted Average 0.623 0.618
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Table 3: Percentage change of quadripartite decomposition indexes, 1990-
2000.

Produtivity E − 1 T − 1 K − 1 H − 1
# Province TEb TEc Change × 100 × 100 × 100 × 100

1 Anhui 0.59 0.57 165.0 -4.0 0.0 176.1 0.0
2 Beijing 0.68 0.69 182.8 1.2 47.1 74.9 8.6
3 Fujian 0.67 0.80 247.8 18.9 1.7 176.1 4.2
4 Gansu 0.41 0.53 138.6 28.8 0.8 72.3 6.6
5 Guangdong 0.71 0.79 193.3 11.8 1.4 149.9 3.5
6 Guangxi 0.53 0.60 175.7 12.4 0.0 145.2 0.0
7 Guizhou 0.48 0.46 85.4 -5.5 0.0 96.2 0.0
8 Hebei 0.53 0.70 194.4 31.9 1.6 110.8 4.1
9 Heilongjiang 0.52 0.71 96.6 36.7 1.7 36.2 3.9

10 Henan 0.50 0.50 118.2 0.0 0.0 118.1 0.0
11 Hubei 0.57 0.63 202.8 10.8 0.9 158.2 4.9
12 Hunan 0.65 0.60 147.4 -6.9 0.0 165.7 0.0
13 Inner Mongolia 0.52 0.66 129.6 27.4 1.9 71.9 2.9
14 Jiangsu 0.53 0.81 273.3 52.3 2.5 130.4 3.8
15 Jiangxi 0.58 0.56 176.8 -3.3 0.0 178.9 2.6
16 Jilin 0.50 0.72 192.1 44.3 1.8 94.0 2.5
17 Liaoning 0.67 0.94 157.4 40.0 3.9 68.0 5.3
18 Ningxia 0.42 0.50 75.0 18.9 3.6 31.9 7.7
19 Sha’anxi 0.44 0.52 111.0 16.4 0.9 70.5 5.3
20 Shandong 0.51 0.69 216.6 34.8 1.7 121.7 4.1
21 Shanghai 1.00 1.00 269.5 0.0 93.0 79.7 6.5
22 Shanxi 0.41 0.55 125.2 36.0 1.2 57.5 3.8
23 Sichuan 0.39 0.43 128.4 9.1 0.0 108.8 0.3
24 Tianjin 0.62 0.84 243.9 35.0 29.6 81.1 8.5
25 Qinghai 0.36 0.47 89.4 30.1 2.4 32.2 7.5
26 Xinjiang 0.44 0.57 132.3 27.7 2.8 67.3 5.7
27 Yunnan 0.58 0.48 103.4 -17.6 0.0 141.6 2.1
28 Zhejiang 0.60 0.80 281.2 32.5 2.2 172.7 3.3

Average 0.551 0.646 159.9 17.2 6.0 101.5 3.8
Weighted Average 0.601 0.725

32



Table 4: Percentage change of quadripartite decomposition indexes by classes

Comparison Category Statistic TEb TEc Product. E − 1 T − 1 K − 1 H − 1
change ×100 ×100 ×100 ×100

All

1978-2000 Average 0.55 0.65 421.3 19.7 5.5 290.4 5.7
Weighted Average 0.62 0.73

1978-1989 Average 0.55 0.57 95.4 4.6 3.2 78.7 1.3
Weighted Average 0.62 0.62

1990-2000 Average 0.55 0.65 159.9 17.2 6.0 101.5 3.8
Weighted Average 0.60 0.73

Wealth Classification: mode is a cut-off

1978-2000 Rich Average 0.70 0.87 507.7 28.0 39.2 222.5 9.2
1978-2000 Rich Weighted Average 0.76 0.90
1978-1989 Rich Average 0.70 0.76 88.5 8.8 19.9 39.3 4.2
1978-1989 Rich Weighted Average 0.76 0.81
1990-2000 Rich Average 0.74 0.87 213.4 19.1 43.4 75.9 7.2
1990-2000 Rich Weighted Average 0.80 0.90
1978-2000 Poor Average 0.52 0.61 446.1 20.7 1.1 340.8 5.2
1978-2000 Poor Weighted Average 0.53 0.65
1978-1989 Poor Average 0.52 0.53 100.2 5.3 0.7 93.7 0.9
1978-1989 Poor Weighted Average 0.53 0.53
1990-2000 Poor Average 0.52 0.61 158.3 18.5 1.2 111.8 3.3
1990-2000 Poor Weighted Average 0.52 0.65
Wealth Classification: median is a cut-off

1978-2000 rich Average 0.67 0.78 535.3 20.7 16.6 346.6 7.1
1978-2000 rich Weighted Average 0.73 0.85
1978-1989 rich Average 0.67 0.65 100.8 -0.9 8.0 93.7 1.8
1978-1989 rich Weighted Average 0.73 0.74
1990-2000 rich Average 0.63 0.78 200.6 26.4 18.4 98.3 5.2
1990-2000 rich Weighted Average 0.73 0.85
1978-2000 middle Average 0.46 0.61 481.1 38.8 1.8 308.9 7.2
1978-2000 middle Weighted Average 0.43 0.64
1978-1989 middle Average 0.46 0.49 105.5 9.5 2.2 88.5 2.5
1978-1989 middle Weighted Average 0.44 0.49
1990-2000 middle Average 0.48 0.61 163.3 28.5 2.1 91.5 5.4
1990-2000 middle Weighted Average 0.48 0.64
1978-2000 poor Average 0.50 0.54 353.6 9.2 0.3 313.2 3.1
1978-2000 poor Weighted Average 0.50 0.55
1978-1989 poor Average 0.50 0.54 90.6 9.4 0.0 76.0 0.0
1978-1989 poor Weighted Average 0.50 0.54
1990-2000 poor Average 0.53 0.54 134.1 2.8 0.3 127.3 1.3
1990-2000 poor Weighted Average 0.52 0.55
Geographical Classification

1978-2000 Coastal Average 0.66 0.79 624.2 21.7 15.3 415.5 7.1
1978-2000 Coastal Weighted Average 0.73 0.85
1978-1989 Coastal Average 0.66 0.66 114.9 0.4 7.2 105.6 1.5
1978-1989 Coastal Weighted Average 0.73 0.75
1990-2000 Coastal Average 0.64 0.79 221.4 24.6 16.8 119.1 4.7
1990-2000 Coastal Weighted Average 0.74 0.85
1978-2000 Interior Average 0.48 0.56 345.4 21.8 0.9 264.6 4.9
1978-2000 Interior Weighted Average 0.49 0.58
1978-1989 Interior Average 0.48 0.51 87.9 9.2 1.0 73.1 1.2
1978-1989 Interior Weighted Average 0.49 0.49
1990-2000 Interior Average 0.49 0.56 130.4 14.6 1.1 98.7 3.3
1990-2000 Interior Weighted Average 0.48 0.58
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Table 5: Growth Regressions of the Percentage Change in Output per
Worker and the Four Decomposition Indices on Output per Worker in Base
Period

Regression (A)Regression (B)Regression (C)Regression (D) Regression (E)

PROD − 1 EFF − 1 TECH − 1 KACCUM − 1HACCUM − 1
× 100 × 100 × 100 × 100 × 100

Comparison 1978–2000, base period is 1978

Constant 434.18 21.02 -10.91 376.35 3.95
0.000 0.002 0.000 0.000 0.000

Slope 2.0E-05 7.2E-07 1.7E-05 -5.1E-05 1.7E-06
0.511 0.886 0.000 0.086 0.004

Comparison 1978–1989, base period is 1978

Constant 104.11 7.07 -4.99 104.49 -0.07
0.000 0.085 0.000 0.000 0.890

Slope -5.5E-06 -1.3E-06 8.3E-06 -1.8E-05 1.4E-06
0.310 0.505 0.000 0.008 0.001

Comparison 1990–2000, base period is 1990

Constant 141.31 18.11 -12.64 123.65 2.26
0.000 0.003 0.000 0.000 0.005

Slope 1.2E-05 2.2E-07 9.8E-06 -8.3E-06 7.9E-07
0.511 0.916 0.000 0.032 0.024

Notes : p-values in parentheses, based on “heteroskedasticity-consistent” estimators
for the variance (Huber 1981 and White 1980).
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Table 6: Distribution Hypotheses Tests

H0 : Distributions are equal Value of Bootstrap Conclusion of
H1 : Distributions are not equal statistic p-value testing H0

1978-2000

g(y2000) vs. f(y1978) 13.5423 0.0000 reject
g(y2000) vs. f(y1978 ×EFF ) 10.7953 0.0000 reject
g(y2000) vs. f(y1978 × TECH) 14.0844 0.0000 reject
g(y2000) vs. f(y1978 ×KACC) 0.2078 0.7570 fail to reject
g(y2000) vs. f(y1978 ×HACC) 13.1475 0.0000 reject
g(y2000) vs. f(y1978 ×EFF × TECH) 11.0298 0.0000 reject
g(y2000) vs. f(y1978 ×EFF ×KACC) 0.0760 0.9186 fail to reject
g(y2000) vs. f(y1978 ×EFF ×HACC) 10.1118 0.0000 reject
g(y2000) vs. f(y1978 × TECH ×KACC) 0.1964 0.7640 fail to reject
g(y2000) vs. f(y1978 × TECH ×HACC) 13.3958 0.0000 reject
g(y2000) vs. f(y1978 ×KACC ×HACC) 0.1109 0.8748 fail to reject
g(y2000) vs. f(y1978 ×EFF × TECH ×KACC) 0.0080 0.9910 fail to reject
g(y2000) vs. f(y1978 ×EFF × TECH ×HACC) 9.9615 0.0000 reject
g(y2000) vs. f(y1978 ×EFF ×KACC ×HACC) 0.0695 0.9196 fail to reject
g(y2000) vs. f(y1978 × TECH ×KACC ×HACC) 0.0598 0.9346 fail to reject

1978-1989

g(y1989) vs. f(y1978) 5.2432 0.0002 reject
g(y1989) vs. f(y1978 ×EFF ) 5.3956 0.0000 reject
g(y1989) vs. f(y1978 × TECH) 5.1430 0.0004 reject
g(y1989) vs. f(y1978 ×KACC) -0.1343 0.8454 fail to reject
g(y1989) vs. f(y1978 ×HACC) 5.1089 0.0002 reject
g(y1989) vs. f(y1978 ×EFF × TECH) 5.4117 0.0002 reject
g(y1989) vs. f(y1978 ×EFF ×KACC) 0.0163 0.9800 fail to reject
g(y1989) vs. f(y1978 ×EFF ×HACC) 5.3659 0.0002 reject
g(y1989) vs. f(y1978 × TECH ×KACC) -0.1028 0.8896 fail to reject
g(y1989) vs. f(y1978 × TECH ×HACC) 4.9277 0.0006 reject
g(y1989) vs. f(y1978 ×KACC ×HACC) -0.1301 0.8462 fail to reject
g(y1989) vs. f(y1978 ×EFF × TECH ×KACC) 0.0030 0.9968 fail to reject
g(y1989) vs. f(y1978 ×EFF × TECH ×HACC) 5.5721 0.0000 reject
g(y1989) vs. f(y1978 ×EFF ×KACC ×HACC) 0.0039 0.9958 fail to reject
g(y1989) vs. f(y1978 × TECH ×KACC ×HACC) -0.0869 0.9050 fail to reject

1978-1989

g(y2000) vs. f(y1990) 6.0909 0.0000 reject
g(y2000) vs. f(y1990 ×EFF ) 3.0500 0.0054 reject
g(y2000) vs. f(y1990 × TECH) 6.1581 0.0000 reject
g(y2000) vs. f(y1990 ×KACC) 1.1952 0.0720 fail to reject
g(y2000) vs. f(y1990 ×HACC) 5.9276 0.0000 reject
g(y2000) vs. f(y1990 ×EFF × TECH) 3.5532 0.0008 reject
g(y2000) vs. f(y1990 ×EFF ×KACC) 0.0458 0.9506 fail to reject
g(y2000) vs. f(y1990 ×EFF ×HACC) 3.1455 0.0046 reject
g(y2000) vs. f(y1990 × TECH ×KACC) 1.0664 0.0854 fail to reject
g(y2000) vs. f(y1990 × TECH ×HACC) 6.0031 0.0000 reject
g(y2000) vs. f(y1990 ×KACC ×HACC) 1.2491 0.0612 fail to reject
g(y2000) vs. f(y1990 ×EFF × TECH ×KACC) -0.0011 0.9994 fail to reject
g(y2000) vs. f(y1990 ×EFF × TECH ×HACC) 3.5104 0.0018 reject
g(y2000) vs. f(y1990 ×EFF ×KACC ×HACC) 0.0707 0.9266 fail to reject
g(y2000) vs. f(y1990 × TECH ×KACC ×HACC) 1.1133 0.0778 fail to reject

Notes: We used the bootstrapped Li (1996) Tests with 5000 bootstrap replications and
the Sheather and Jones (1991) bandwidth.
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Figure 1: China Provinces
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Figure 2: Quadripartite Decomposition
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Figure 4: Actual Output per Worker Distributions

Notes: Upper panel presents actual Output per Worker Distributions in 1978 and 2000; middle

panel–in 1978 and 1989; the lower panel–in 1990 and 2000. The solid curve is the actual “base”

distribution and the solid vertical line represents the “base” mean value. The dashed curve is the

actual “current” distribution and the dashed vertical line represents the “current” mean value.
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Figure 5: Percentage change (from 1978 to 2000) in output per worker and four
decomposition indexes, plotted against output per worker in 1978

Note: Each panel contains a GLS regression line.
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Figure 6: Percentage change (from 1978 to 1989) in output per worker and four
decomposition indexes, plotted against output per worker in 1978

Note: Each panel contains a GLS regression line.
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Figure 7: Percentage change (from 1990 to 2000) in output per worker and four
decomposition indexes, plotted against output per worker in 1990

Note: Each panel contains a GLS regression line.
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Figure 8: Counterfactual Distributions of Output per Worker. Sequence of introduc-
ing effects of decomposition: EFF, KACC, and HACC

Notes: In each panel, the solid curve is the actual 1978 distribution and the solid vertical line

represents the 1978 mean value. The dashed curve is the actual 2000 distribution and the dashed

vertical line represents the 2000 mean value. The dotted curves in each panel are the counterfactual

distributions isolating, sequentially, the effects of efficiency change, capital deepening, and human

capital accumulation on the 1978 distribution, and the dotted vertical line represents the respective

counterfactual mean.
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Figure 9: Counterfactual Distributions of Output per Worker. Sequence of introduc-
ing effects of decomposition: EFF, KACC, and HACC

Notes: In each panel, the solid curve is the actual 1978 distribution and the solid vertical line

represents the 1978 mean value. The dashed curve is the actual 1989 distribution and the dashed

vertical line represents the 1989 mean value. The dotted curves in each panel are the counterfactual

distributions isolating, sequentially, the effects of efficiency change, capital deepening, and human

capital accumulation on the 1978 distribution, and the dotted vertical line represents the respective

counterfactual mean.
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Figure 10: Counterfactual Distributions of Output per Worker. Sequence of intro-
ducing effects of decomposition: EFF, KACC, and HACC

Notes: In each panel, the solid curve is the actual 1990 distribution and the solid vertical line

represents the 1990 mean value. The dashed curve is the actual 2000 distribution and the dashed

vertical line represents the 2000 mean value. The dotted curves in each panel are the counterfactual

distributions isolating, sequentially, the effects of efficiency change, capital deepening, and human

capital accumulation on the 1990 distribution, and the dotted vertical line represents the respective

counterfactual mean.
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