Chemical Compounds

1. Classification of Elements and Compounds

Types of Pure Substances (Figure 3.4)

- **Elements** -- made up of only one type of atom
 - *atomic* (e.g., He, Cu) or *molecular* (e.g., H\(_2\), N\(_2\), P\(_4\))

- **Compounds** -- made up of atoms of two or more different elements
 - *molecular* (e.g., H\(_2\)O, PF\(_5\)) or *ionic* (e.g., NaCl)

2. Elements combine to form compounds -- two general types

- **Molecular Compounds** -- *Covalent Bonding* -- *electron sharing*
 - atoms linked together by "covalent bonds" in *discrete* electrically neutral particles called *molecules*
 - e.g., H\(_2\)O, CO\(_2\), PCl\(_3\), C\(_{12}\)H\(_{22}\)O\(_{11}\)

- **Ionic Compounds** -- *Ionic Bonding* -- *electron transfer*
 - result from transfer of one or more electrons from one atom to another to yield oppositely-charged particles called *ions*
 - cation = positive ion anion = negative ion
 - there are not discrete molecules -- the ions are held together by electrostatic forces in a regular, 3-dimensional pattern called a *crystalline lattice*
 - e.g., MgCl\(_2\) magnesium chloride

\[
\text{Mg} + \text{Cl}^− \rightarrow \text{Mg}^{2+} + 2 \text{Cl}^− \\
\text{MgCl}_2
\]
3. Properties of Ionic and Molecular Compounds

Ionic compounds:
- hard, brittle, high-melting crystalline solids
- non-conductors in solid state, but conductors when molten
- electrolytes -- separate into ions in aqueous solution

Molecular compounds:
- only weak attractive forces between uncharged molecules
- generally low mp and bp
- non-conductors of electricity
- usually nonelectrolytes

4. Types of Chemical Formulas (e.g., see Table 3.1)

empirical formula shows the *simplest ratio* of the elements present

molecular formula shows the *actual number* of atoms in one molecule

structural formula shows how the atoms are connected

For "hydrogen peroxide" the three formulas are:

empirical: HO molecular: H₂O₂

structural: \(\text{H—O—O—H} \)

molecular model a 3-D rendering of the structure of a molecule
common types are "ball and stick" or "space-filling"
5. Relationship to Periodic Table -- Some General trends

Molecular compounds contain only nonmetals and/or metalloids

e.g., PH₃ AsF₅ HBr

some nonmetallic elements actually exist as molecular compounds

e.g., the diatomics (H₂, O₂, N₂, etc. as listed before)
also: P₄, As₄, S₈, Se₈

Ionic compounds contain metals and/or polyatomic ions

group IA (1) +1 cations Li⁺, Na⁺, K⁺,
group IIA (2) +2 cations Mg²⁺, Ca²⁺,
an important +3 cation Al³⁺

other metals may form more than one cation, e.g.:

Fe²⁺ and Fe³⁺ Sn²⁺ and Sn⁴⁺
group VIA (16) -2 anions O²⁻, S²⁻, Se²⁻,
group VIIA (17) -1 anions F⁻, Cl⁻, Br⁻,

6. Polyatomic Ions -- two or more atoms combined in a single charged unit

e.g., NH₄⁺ ammonium ion
NO₃⁻ nitrate ion
PO₄³⁻ phosphate ion
HCO₃⁻ hydrogen carbonate (or bicarbonate ion)

KNOW ALL of the formulas and names in Table 3.4 plus the following!!!

H₃O⁺ hydronium ion
C₂O₄²⁻ oxalate
PO₃³⁻ phosphite
OCN⁻ cyanate
SCN⁻ thiocyanate
S₂O₃²⁻ thiosulfate

See the class web site for an organized tabulation of the polyatomic ions!
Writing Formulas for Ionic Compounds

look for the simplest combination of cations and anions to yield an electrically neutral formula

<table>
<thead>
<tr>
<th>ion combination</th>
<th>compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg$^{2+}$ and Cl$^{-}$</td>
<td>MgCl$_2$</td>
</tr>
<tr>
<td>Na$^+$ and O$^{2-}$</td>
<td>Na$_2$O</td>
</tr>
<tr>
<td>Fe$^{3+}$ and SO$_4^{2-}$</td>
<td>Fe$_2$(SO$_4$)$_3$</td>
</tr>
</tbody>
</table>

e.g., What compound should form between sulfur (S) and potassium (K)?

K is in group IA \rightarrow K$^+$

S is in group VIA \rightarrow S$^{2-}$

therefore, the compound should be K$_2$S

Inorganic Chemical Nomenclature

1. Binary compounds of metals and nonmetals -- ionic compds

cation first, then anion, e.g.:

MgO magnesium oxide

CaF$_2$ calcium fluoride

FeO iron(II) oxide {aka ferrous oxide}

Fe$_2$O$_3$ iron(III) oxide {aka ferric oxide}

2. Compounds with polyatomic ions -- ionic compds

must first recognize the polyatomic ions, e.g.:

Na$_2$SO$_4$ sodium sulfate

NH$_4$Cl ammonium chloride

Cr$_3$(PO$_4$)$_2$ chromium(II) phosphate
3. Hydrated ionic compounds

have a specific number of water molecules associated with each formula unit of an ionic substance

e.g., \(\text{MgCl}_2 \cdot 6\text{H}_2\text{O} \) magnesium chloride hexahydrate

\(\text{CuSO}_4 \cdot 5\text{H}_2\text{O} \) copper(II) sulfate pentahydrate

4. Binary compounds of nonmetals -- *molecular* compds

use prefixes to indicate numbers of each atom, e.g.:

\(\text{PF}_3 \) phosphorus trifluoride

\(\text{P}_2\text{F}_4 \) diphosphorus tetrafluoride

\(\text{N}_2\text{O}_5 \) dinitrogen pentoxide

exception -- hydrogen plus one atom of a nonmetal. e.g.:

\(\text{H}_2\text{S} \) hydrogen sulfide (not "dihydrogen")

5. Binary acids and their salts

Acid: substance that reacts with water to yield hydronium ions (\(\text{H}_3\text{O}^+ \)) and anions, e.g.:

\[
\text{HBr}\,(\text{g}) + \text{H}_2\text{O} \longrightarrow \text{H}_3\text{O}^+\,(\text{aq}) + \text{Br}^-\,(\text{aq})
\]

\(\text{HBr}\,(\text{aq}) \) *hydrobromic acid*

\(\text{H}_2\text{Se}\,(\text{aq}) \) *hydroselenic acid*

Salt: an ionic compound produced by *neutralization* of an acid by a base (a supplier of hydroxide ions, \(\text{OH}^- \)), e.g.:

\[
\text{HBr}\,(\text{aq}) + \text{KOH}\,(\text{aq}) \longrightarrow \text{KBr}\,(\text{aq}) + \text{H}_2\text{O}
\]

\(\text{KBr} \) potassium bromide \{a salt of *hydrobromic acid*\}

\(\text{Na}_2\text{S} \) sodium sulfide \{a salt of *hydrosulfuric acid*\}
6. Oxoacids and their salts

oxoacid (aka *oxyacid*) -- H_xEO_y (where E = nonmetal)

removal of H^+ yields polyatomic anions

<table>
<thead>
<tr>
<th>oxoacid</th>
<th>polyatomic ions</th>
<th>salt example</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_2SO_4</td>
<td>SO_4^{2-}</td>
<td>Na_2SO_4</td>
</tr>
<tr>
<td>sulfuric acid</td>
<td>sulfate</td>
<td>sodium sulfate</td>
</tr>
<tr>
<td>H_2SO_3</td>
<td>SO_3^{2-}</td>
<td>$CaSO_3$</td>
</tr>
<tr>
<td>sulfurous acid</td>
<td>sulfite</td>
<td>calcium sulfite</td>
</tr>
<tr>
<td></td>
<td>HSO_3^-</td>
<td>$Ca(HSO_3)_2$</td>
</tr>
<tr>
<td></td>
<td>hydrogen sulfite</td>
<td></td>
</tr>
</tbody>
</table>

review the series of chlorine oxoacids and their salts: $HClO_x$ ($x = 1, 2, 3, 4$)

Composition of Compounds

1. Empirical and Molecular Formulas

 empirical formula -- shows the *simplest ratio* of the elements present

 molecular formula -- shows the *actual number* of atoms in one molecule

2. Percentage Composition -- mass % of elements in a compound

 theoretical % composition -- *from given formula*

 Problem: What is percentage composition of H_2CO_3?

 mole ratio = $2 \text{ mol H : 1 mol C : 3 mol O}$

 molar mass = $2 (1.0) + 1 (12.0) + 3 (16.0) = 62.0 \text{ g/mole}$

 % composition:

 - $\% \text{ H} = \frac{\text{mass H}}{\text{mass } H_2CO_3} \times 100\%$

 $= \frac{2 (1.01)}{62.0} \times 100\% = 3.26\%$

 - $\% \text{ C} = \frac{12.01}{62.0} \times 100\% = 19.36$

 - $\% \text{ O} = \frac{3 (16.00)}{62.0} \times 100\% = 77.38$

 Total: 100.00 %
3. Empirical Formula -- determination from % composition

Problem:
A certain fluorocarbon is found to be 36.52% C, 6.08% H, and 57.38% F. What is the empirical formula of this compound?

{we're looking for the *mole ratio* of the elements}

In 100 g of the compound, there are:

\[(36.52 \text{ g C}) \times \left(\frac{1 \text{ mol C}}{12.01 \text{ g C}}\right) = 3.041 \text{ mole C}\]
\[(6.08 \text{ g H}) \times \left(\frac{1 \text{ mol H}}{1.01 \text{ g H}}\right) = 6.020 \text{ mole H}\]
\[(57.38 \text{ g F}) \times \left(\frac{1 \text{ mol F}}{19.00 \text{ g F}}\right) = 3.020 \text{ mole F}\]

So, the mole ratio is:
\[\text{C} 3.041 \quad \text{H} 6.020 \quad \text{F} 3.020\]

Now reduce to simplest ratio (divide by smallest number):
\[\frac{3.041}{3.020} \quad \frac{6.020}{3.020} \quad \frac{3.020}{3.020}\]
\[= \frac{1.007}{1} \quad \frac{1.993}{1} \quad \frac{1}{1}\]
\[\text{C} 1.007 \quad \text{H} 1.993 \quad \text{F}\]

(empirical formula)

4. Molecular Formula

empirical formula combined with *molecular mass = molecular formula*

Problem:
The above fluorocarbon is found to have a molecular mass of 66.08 g/mole. What is the molecular formula?

\[n \times \text{mass of empirical formula} = \text{molecular mass}\{ n = ? \}\]

\[\text{empirical formula} = \text{CH}_2\text{F}\]
\[\text{formula mass} = 1 \text{ C} + 2 \text{ H} + 1 \text{ F} = 33.03 \text{ g/mole}\]

\[n \times (33.03 \text{ g/mole}) = 66.08 \text{ g/moles, } n = 2\]
\[\therefore \text{molecular formula is } \text{C}_2\text{H}_4\text{F}_2\]
Chemical Equations

1. Balancing Chemical Equations -- by inspection

Adjust coefficients to get equal numbers of each kind of element on both sides of arrow.

Use smallest, whole number coefficients.

E.g., start with unbalanced equation (for the *combustion* of butane):

\[
C_4H_{10} + O_2 \rightarrow CO_2 + H_2O
\]

Reactants

Products

Hint: first look for an element that appears only once on each side; e.g., C

\[
C_4H_{10} + 13/2 O_2 \rightarrow 4 CO_2 + 5 H_2O
\]

Multiply through by 2 to remove fractional coefficient:

\[
2 C_4H_{10} + 13 O_2 \rightarrow 8 CO_2 + 10 H_2O
\]

2. Combustion Analysis

See Examples 3.20 and 3.21 in textbook

Based on combustion reactions (like the one above)

\[
C_xH_y \text{ or } C_xH_yO_z \text{ compound} + \text{excess } O_2 \rightarrow CO_2 + H_2O
\]

% C and x determined from amount of CO₂ produced

% H and y determined from amount of H₂O produced

% O (if present) and z must be determined by difference
Organic Compounds -- molecular compounds of carbon
(See Tables 3.6 and 3.7)

<table>
<thead>
<tr>
<th>Family</th>
<th>Main Structural Feature</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alkanes</td>
<td>only single bonds</td>
<td>CH₃CH₃</td>
</tr>
<tr>
<td>Alkenes</td>
<td>C=C</td>
<td>CH₂=CH₂</td>
</tr>
<tr>
<td>Alkynes</td>
<td>C≡C</td>
<td>HCCCC</td>
</tr>
<tr>
<td>Aromatic</td>
<td>benzene ring (e.g., C₆H₆)</td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td>R-OH</td>
<td>CH₃CH₂OH</td>
</tr>
<tr>
<td>Ethers</td>
<td>R-O-R'</td>
<td>CH₃OCH₃</td>
</tr>
<tr>
<td>Aldehydes</td>
<td>R- C-H</td>
<td>CH₃- C-H</td>
</tr>
<tr>
<td>Ketones</td>
<td>R-C-R'</td>
<td>CH₃- C-CH₂CH₃</td>
</tr>
<tr>
<td>Carboxylic Acids</td>
<td>R-C-OH</td>
<td>CH₃-C-OH</td>
</tr>
<tr>
<td>Esters</td>
<td>R-C-OR'</td>
<td>CH₃-C-OCH₂CH₃</td>
</tr>
<tr>
<td>Amines</td>
<td>R NH₂, R₂NH, R₃N</td>
<td>CH₃NH₂</td>
</tr>
</tbody>
</table>

Nomenclature - based on hydrocarbons:

- CH₄ methane
- C₂H₆ ethane
- C₃H₈ propane
- C₄H₁₀ butane
- C₅H₁₂ pentane
- C₆H₁₄ hexane
- C₇H₁₆ heptane
- C₈H₁₈ octane, etc......