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ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Science/Computer Science

Name of Candidate Bingyang Wei

Title A Comparison of Two Frameworks for Multiple-viewed

Software Requirements Acquisition

The requirements process is a knowledge-intensive activity in which a large

amount of requirements knowledge is acquired from di�erent sources. Multiple-viewed

requirements modeling facilitates that process by allowing modelers to observe the

system from di�erent viewpoints. Requirements knowledge is then organized and en-

coded in di�erent requirements analysis models which collaboratively form an over-

all understanding of the system. One problem that always plagues modelers is the

acquisition of requirements knowledge for building analysis models. An important

but commonly neglected source of new requirements knowledge is the models that

have already been built for the system under development. By translating each cur-

rently available model into a target model to be built, an incomplete target model is

generated which then can be used as a modest spur to encourage modelers to pro-

vide more requirements knowledge. Two frameworks can be used to support such

requirements acquisition: pair-wise and common representation frameworks. In prac-

tical applications, various factors need to be considered when requirements modelers

choose between the two frameworks in order to acquire requirements by analysis model

transformations. In this dissertation, we develop a conceptual graphs-based common
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representation framework for requirement knowledge acquisition, and then propose a

set of criteria which provides a theoretical basis for comparing the two frameworks

for their e�ectiveness of generating models and acquiring requirements in the context

of multiple-viewed requirements modeling.

Abstract Approval: Committee Chair
Dr. Harry S. Delugach

Department Chair
Dr. Heggere S. Ranganath

Graduate Dean
Dr. David Berkowitz
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A NOTE ABOUT TYPEFACES AND COLORS

This work uses three di�erent typefaces. Bulk of the document uses the same

typeface that this sentence is written in. This is the regular typeface. When UML

terms in a �gure are introduced in the text, a bold typeface is used, like event Pump

Failure. Lastly, an italic typeface, like State: MethaneAlarmSwitchOn, indicates

that the item is from conceptual graphs.

This document uses �ve colors to di�erentiate the various types of requirements

knowledge expressed by UML and conceptual graphs: UML class diagrams and the

conceptual graphs that represent their semantics are in orange. UML state diagrams

and the conceptual graphs that represent their semantics are in green. UML sequence

diagrams and the conceptual graphs that represent their semantics are in cyan. Light

gray is used in conceptual graphs to indicate inferred knowledge. Canonical graphs

are in white.
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How do I know what I do not know?

�a desperate requirements modeler



CHAPTER 1

INTRODUCTION

Research is what I'm doing
when I don't know what I'm doing.

�Wernher von Braun

1.1 Overview

Software requirements describe the functions and constraints that a software

system must have in order to achieve an objective within a speci�c application do-

main. Properly eliciting and modeling the requirements are critical to successful

software development. Multiple-viewed requirements modeling is commonly used so

that a system is observed from di�erent viewpoints by di�erent modelers and the

requirements are expressed in di�erent types of analysis models. Each analysis model

is responsible for describing one aspect of the system and all of them together consti-

tute the overall description of the system. Moreover, these models form an interesting

requirements �ecosystem,'' where they evolve concurrently (Figure 1.1) by acquiring

more requirements knowledge during the requirements process.

The building of di�erent types of analysis models for a system is parallel

and iterative by nature and might be conducted by di�erent requirements modelers.

However, it is di�cult for a modeler to know whether an analysis model is complete
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Model1 Model 1’ Model 1’’

Model 2

Model 3 Model 3’

Time

More requirements More requirements

More requirements

Ecosystem of requirements models

Figure 1.1: Ecosystem of multiple-viewed requirements modeling

or what requirements are missing from the current analysis model [1]. The same

di�culty also exists when a modeler starts to build an analysis model at the very

beginning. The modelers need to be made aware of the missing requirements of

analysis models.

In order to make explicit the missing requirements in an analysis model, Del-

ugach proposed the idea of conceptual feedback [2] which can provide prompts for

the missing requirements to modelers (see Figure 1.2). This approach is based on the

requirements knowledge overlap among analysis models of the same system. During

conceptual feedback, requirements in the already-created analysis models (Model0

to Modeln in (b) of Figure 1.2) in the �ecosystem'' are transformed to generate re-

quirements needed for constructing a target analysis model Modelx. This process

introduces new requirements to Modelx, which make it more complete, and, more

importantly, causes it to generate some �semantic holes'' which reveal some miss-

ing requirements that a modeler is not aware of before the generation process. A
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subsequent RE activities

[semantic holes]

Elicitation

[No more semantic holes]

Evaluation

Specification
( see (b) )

Model1 Model 2

Model0 Model n

Model x

transform to transform to

transform to transform to

Specification

Model0 … Modeln are currently available models of the system
Modelx is the target model to be built

(a) (b)

Figure 1.2: Conceptual feedback in RE process

simple example of adopting the conceptual feedback approach to generate semantic

holes in a UML class diagram is shown in Figure 1.3 and Figure 1.4. Through model

transformations, the original UML class diagram shown in Figure 1.3 is augmented

by requirements from the current state diagrams and sequence diagrams of a Mine

Safety Control system (not shown here). The resulting augmented class diagram is

shown in Figure 1.4. Note that the augmented class diagram contains semantic holes

which denote the potentially missing requirements. In other words, they are require-

ments of the class diagram which cannot be automatically generated based on the

existing requirements knowledge in other currently available models, therefore need

to be explicitly provided by modelers. For example, class PumpActuator in Figure 1.4
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has two semantic holes: an unspeci�ed attribute and an unspeci�ed operation, which

graphically are shown as question marks in the attribute compartment and operation

compartment, respectively.

Tracking

Alerting

LowWaterSensor
-waterLevelReading
-lowWaterSignal

HighWaterSensor
-waterLevelReading
-highWaterSignal

COAlarm

AirflowAlarm

MethaneAlarm

GasAlarm
-alarmStatus:{on, off}

Tracking

1..*

1

Location

Mine
-methaneLevel
-CO-Level
-airflow

1 1
Regulation

Pump
-motorStatus:{on, off}
-switchStatus:{on, off}

Sump
-waterLevel

Figure 1.3: Original class diagram before model transformations

Because of the presence of semantic holes, the augmented analysis model is

considered as incomplete so modelers are invited to complete it by providing the

missing requirements. This enables additional new requirements to be elicited by

�lling in those holes (This process is shown as a backtracking from Speci�cation to

Elicitation in (a) of Figure 1.2). After eliciting requirements and �lling in the semantic

holes, the augmented model with semantic holes resolved would in turn a�ect other

models (dotted arrows in (b) of Figure 1.2), causing further generation and completion

processes in other analysis models of the �ecosystem.'' The process may repeat until

no more new requirements knowledge can be acquired by transforming models, i.e.,

the �ecosystem'' is internally complete and self-consistent.
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Tracking

Alerting

LowWaterSensor
-waterLevelReading
-lowWaterSignal: {on, off}
?

HighWaterSensor
-waterLevelReading
-highWaterSignal: {on, off}
«from seq diagram»
retract()

COAlarm

AirflowAlarm

MethaneAlarm

GasAlarm
-alarmStatus:{on, off}

Tracking

1..*

1

Location

Mine
-methaneLevel: {High}
-CO-Level
-airflow
?

1 1
Regulation

Pump
-motorStatus:{on, off}
-switchStatus:{on, off}
?

Sump
-WaterLevel: {High}
?

??
assoc.

??
assoc.

?

?
assoc.

??
assoc.

?

?

assoc.

PumpActuator
-?
«reception»
?

MethaneAlarmActuator
-?
«reception»
processMethaneAlarmOnSignal()

?
?

pumpFailure_assoc.

ClassCausing
PumpFailureEvent 
-?
?

?
?

assoc.

?

?

assoc.

MethaneSensor
«from state diagram»
-highMethaneSignal: 
{on, off}
?

SafetyController
-?
?

Figure 1.4: Augmented class diagram after model transformations

In summary, model transformations in a requirements �ecosystem'' enable con-

tinuous knowledge �ow between models, thus enhancing communication between dif-

ferent types of models and driving the requirements development process among in-

dividual models. This approach then will guide a team of requirements modelers to

achieve a set of models which are consistent and complete.

1.2 Research Problem

In the context of multiple-viewed requirements modeling, there are two pos-

sible frameworks (Figure 1.5) that can support software requirements acquisition by

model transformations. They are the pair-wise framework (PWF) and the common
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representation framework (CRF). The former framework supports requirements ac-

quisition by direct transformations between models whereas the latter by replying

on a common knowledge representation that describes the semantics of the analysis

models in the �ecosystem.''

Model1

Model2

Model3Model4

Model5

Conceptual
Graphs

Model1

Model2

Model3Model4

Model5

(a) (b)

Figure 1.5: PWF and CRF

Both frameworks are widely used in the context of multiple-viewed require-

ments modeling, mainly for requirements consistency checking between models [3] [7]

[8] [9] [10]. However they are not generally used for the purpose of requirements knowl-

edge acquisition. For PWF, Selonen et al. [4] described the semantics of pair-wise

model transformations between UML diagrams and indicated that such transforma-

tions could be used to produce an initial incomplete model for knowledge acquisition

purposes; for CRF, Delugach [2] proposed using conceptual graphs (CGs) [11] in CRF

in order to transform and acquire requirements for analysis models. However the se-

mantics of the transforming models to and from CGs were only partially de�ned and

no explicit guidelines were described. A more detailed and semantically solid descrip-
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tion of model transformations in the CRF used for requirements acquisition is needed

to greatly enhance the quality of requirements acquisition process.

Another important research problem is that the two frameworks' e�ectiveness

in transforming model and acquiring requirements knowledge is largely unknown.

There is no theoretical basis for evaluating which framework is more e�ective in

transforming models and acquiring requirements in the context of multiple-viewed

requirements modeling. A detailed analysis of the capability of eliciting requirements

from requirements modelers, the capability of preserving semantics and the extensi-

bility of each framework, and an objective comparison is needed so that researchers

and modelers can rely on this proposed criteria and comparison to choose between

frameworks for addressing requirements acquisition problem.

In summary, this dissertation proposes to develop a formal semantic descrip-

tion of requirements acquisition in CRF and to comes up with a comparison method-

ology which can be used to evaluate PWF and CRF for their e�ectiveness in acquiring

requirements knowledge in a multiple-viewed requirements modeling context.

1.3 Contributions

This work contributes to software engineering community and knowledge rep-

resentation community in two ways:

1. Develop the semantic description of the requirements knowledge acquisition in

the CGs-based CRF to demonstrate that knowledge-based view transformations

7



can indeed provide e�ective assistance to the critical requirements process by

acquiring more requirements knowledge.

2. Provide a set of useful criteria for comparing frameworks that can address the

requirements acquisition problem in multiple-viewed modeling so that modelers

can reference the criteria when choosing frameworks.

1.4 Outline of the Dissertation

The remainder of the dissertation is organized as follows: Chapter 2 surveys

previous representative work which adopts one of the two frameworks in multiple-

viewed modeling; CGs are brie�y introduced as well. In Chapter 3, we present an

overview of the two frameworks (PWF and CRF) that support requirements knowl-

edge acquisition and propose the comparison strategy. Detailed model transforma-

tions in the two frameworks are elaborated in Chapter 4 and Chapter 5, respectively.

In Chapter 6, the two frameworks are evaluated according to a set of criteria; the

results of this comparison are presented. Chapter 7 discusses the strengths and limi-

tations of this work. Chapter 8 concludes the dissertation.

This dissertation evaluates the requirements acquisition in the two frameworks

and compares them based on three complete complete case studies in Chapter 6.

Because of their size, the results are presented in the appendices.

8



CHAPTER 2

BACKGROUND

This chapter presents the necessary background for the work. Section 2.1

surveys previous representative work that adopts one of the two frameworks to trans-

form analysis models during multiple-viewed requirements modeling, with the aim of

identifying their transformation purposes, strategies, and relevance to our work; we

also provide the inspiration and foundation for the common representation framework

that this work is going to develop. Conceptual graphs are then introduced in Section

2.2.

2.1 Literature Review

Model transformations in the context of multiple-viewed requirements model-

ing have been studied by a number of other researchers over the years. This section

reviews literature related to our work; literature using PWF and CRF are described

in Section 2.1.1 and Section 2.1.2, respectively. Since one of the contributions of this

work is to develop a semantic description of the CRF for requirements acquisition,

the di�erence between related work and our work is also discussed in Section 2.1.2;
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important research on requirements knowledge that inspires our work is presented in

Section 2.1.3.

2.1.1 Previous Work Using PWF

Model transformations using PWF are common and straightforward where di-

rect transformation rules are de�ned for each pair of models [3]. In multiple-viewed

requirements modeling, n types of models would therefore require n(n− 1) transfor-

mation rules.

Among the work using PWF, Nuseibeh et al. [3] proposed ViewPoint, which

bundles representation scheme, view development process, and partial speci�cation

together. Inter-ViewPoint rules were de�ned when building ViewPoints. By specify-

ing the rule application mode (check mode or transfer mode), the rules were applied

to check consistency between a pair of ViewPoints, or to transform information in

one ViewPoint's partial speci�cation to another. The transfer mode in application

of inter-ViewPoint rules was used as a way to resolve inconsistencies, not a way to

expose incompleteness for the purpose of acquiring requirements knowledge.

In [7], Egyed compared heterogeneous views for detecting inconsistency by

direct view-to-view transformation since transformation makes a view more under-

standable in the context of other views so that heterogeneous views become more

easily comparable. Transformation rules were de�ned to make the transformation

meaningful and accurate. The purpose of his model transformation in PWF was for

model comparison so that inconsistency can be detected.
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Selonen and his colleagues [4] investigated the relationships among di�erent

types of UML diagrams and discussed transformation operations that are based on

those relationships. Their work indicated that one of the uses of model transforma-

tions in PWF is model synthesis. That is, producing a requirements analysis model

on the basis of an existing requirements analysis model of another type. In our work,

model synthesis is only one of our purposes, we focus more on exposing incomplete-

ness in the generated analysis models and using such incompleteness as a way to

acquire more requirements from human modelers. Still, the semantic descriptions of

transformation operations between UML diagrams in their work are of great value to

us; the PWF that we are going to build in Chapter 4 uses some of their transformation

rules.

There is more previous work dealing with transformation between models,

most of which is about transformations among UML diagrams. For example, the

research in [12] and [13] transformed use case diagrams to other UML diagrams;

Koskimies et al. [14] transformed sequence diagrams to state diagrams; object-to-

class transformations were studied in [15]. Table 2.1 summarizes the related work

using PWF.
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Table 2.1: Previous work using PWF

Previous work Analysis models Purposes

Nuseibeh et al. [3] ViewPoints Inconsistency detection and
model generation

Egyed [7] UML diagrams Inconsistency detection and
model comparison

Selonen et al. [4] UML diagrams Inconsistency detection and
model synthesis

Liu et al. [12] UML diagrams Use cases to other UML dia-
grams conversion

Koskimies et al. [14] Sequence and state
diagrams

Sequence diagrams to state
diagrams conversion

Engels et al. [15] Object and class dia-
grams

Object diagrams to class dia-
grams conversion

2.1.2 Previous Work Using CRF

An alternative to pair-wise transformation of models is the use of a common

representation as an intermediate representation. In CRF, di�erent types of models

are converted to a common representation so that di�erent kinds of analysis (e.g.

consistency checking, integration, completeness checking etc.) can be conducted with

the same representation. This framework also reduces the number of transformation

rules to 2n for models in n di�erent representational styles. In this subsection, we

list several related works adopting CRF during the requirements analysis process.

CGs have been used as a common representation to express requirements anal-

ysis models in [2] [6] [8] [16]. Delugach [2] proposed a CGs-based CRF for validating

and acquiring requirements knowledge in multiple-viewed requirements modeling. In

his work, Delugach converted OMT object diagrams and data �ow diagrams to CGs

12



where their semantic relationships were described. The combined CGs were then

projected back to each originating model, allowing a requirements modeler to ac-

quire new information in his original notation. The requirements modeler could then

examine, validate, and evaluate the new information from other views in his own

view notation. In Cyre's work [6], block diagrams, �owcharts, timing diagrams and

natural language requirements speci�cations were converted to CGs for integration,

consistency, and completeness analysis, and for further automatic synthesis. Our

work is greatly inspired by Delugach and Crye's work. However, in [2], the semantics

of the requirements models were only partially described and no systematic process

of converting and generating models was provided; and in [6], after converting dif-

ferent types of models to CGs, no further discussion was provided on requirements

acquisition through transforming CGs back to models. The CRF developed in this

dissertation builds on Delugach and Cyre's research; it is an extensible framework

based on the CGs Support which facilitates transforming di�erent types of analysis

models to and from CGs for the purpose of requirements knowledge acquisition.

The work of Sunetnanta [8] and Thanitsukkarn [16] focused on model con-

sistency checking using CGs. Models were converted to CGs and checked against

consistency rules which were also expressed in CGs. However, conversion strategy

used in their work was di�erent from Delugach and Crye's. In [8] and [16], CGs were

used as a meta-representational language, so the resulting combined CGs just cap-

tured the structural information of analysis models. We call this conversion strategy

�Structural conversion� and �nd out that structural conversion cannot be e�ectively

used for knowledge acquisition tasks in our work.

13



Whilst the use of CGs as a common representation worked well in the above

literature, there is nothing inherent to CGs that makes them the only way for realizing

a CRF. Shan and Zhu [17] tried to formally specify the semantics of UML diagrams

in �rst-order logic for the purpose of requirements consistency checking. Lucas et

al. [18] managed the requirements consistency problems using two formalisms: a

transformation language QVT Relation [19], which was used to de�ne consistency

relationships between meta-models of requirements analysis models, and a rewriting

logic Maude [20], which gave support for checking consistency. Both models and QVT

Relations were �nally transformed into Maude. Van Der Straeten et al. [9] translated

UML diagrams and consistency constraints between diagrams into description logic

[21]. This approach could also �x some errors by inserting missing requirements.

However, as with the previous work [8] [16] which use CGs as central formalism, they

focused on transforming the structural information of requirements analysis models

based on meta-models of UML diagram. The use of common representation in those

works does not e�ectively capture the semantics behind each analysis model and, as a

result, such use of common representation does not �t in the requirements acquisition

task in our work.

Besides the purposes of requirements acquisition and requirements consistency

checking using CRF, other research used CRF to generate models: Jaramillo et

al. [22] presented pre-conceptual schema, a CG-like knowledge representation with

certain additional symbols representing dynamic properties, and used it in the require-

ments analysis task. The framework they provided could automatically construct pre-

conceptual schemas from requirements written in a controlled natural language and
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then derive three types of UML diagrams (class, state and communication diagrams).

However, our work is not trying to acquire knowledge directly from textual require-

ments but from diagrammatic models like UML diagrams, and emphasizes more the

underlying relations between models in the same �ecosystem� so that requirements

knowledge can �ow across all analysis models. Hasegawa and his colleagues [23] ex-

tracted requirements knowledge from Japanese textual requirements and represented

it in CGs. The resulting CGs could be used to derive models. The authors prede-

�ned a meta-model of CGs and the textual requirements then would be interpreted

in terms of the prede�ned meta-model. This meta-model was general enough to be

used everywhere. However, the resulting CGs model could only be used to construct

class diagrams, so this approach did not capture requirements knowledge for other

types of diagrams in UML. Our approach covers more analysis models and thus is

more comprehensive and useful. Both [22] and [23] demonstrate the capability of CGs

in representing requirements knowledge and their semantic analysis of requirements

greatly bene�t our work.

Previous work using CRF during the requirements process is summarized in

Table 2.2. The key di�erences between previous work and our work are the purposes

of the conversions and the way that models are converted to a common representation

(see Purpose and Conversion strategy in Table 2.2).
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Table 2.2: Previous work using CRF

Our work and
previous work

Knowledge repre-
sentation used

Purpose Conversion
strategy

Our work CGs Requirements
acquisition

Semantic

Delugach [2] CGs Requirements
acquisition

Semantic

Cyre [6] CGs Inconsistency
and complete-
ness detection

Semantic

Jaramillo et al. [22] Modi�ed CGs UML diagram
generation

Semantic

Sunetnanta and
Finkelstein [8]

CGs Inconsistency
detection

Structural

Lucas et al. [18] Maude Inconsistency
detection

Structural

Van Der Straeten et
al. [9]

Description logic Inconsistency
detection

Structural

Shan and Zhu [17] First-order logic Inconsistency
detection

Structural

In Table 2.2, the work in [6] [8] [9] [17] converts models to a knowledge rep-

resentation for the purpose of consistency checking among models. Jaramillo et al.

convert textual requirements in CGs in order to generate UML diagrams. By contrast,

our purpose in converting existing models into CGs is to generate initial UML dia-

grams with semantic holes which can facilitate requirements knowledge acquisition.

While di�erent, we see our work as a useful complement to these approaches.

Our approach is also di�erent from previous work with respect to the conver-

sion strategy. Most previous work performs a purely structural (essentially syntactic)

conversion. This means that, in their resulting knowledge reservoir, there is not
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much additional requirements knowledge, just requirements knowledge in another

form. As a result, even though di�erent kinds of models are all converted into the

same knowledge representation, the degree of integration of requirements knowledge

in the resulting knowledge reservoir is low. These structure-oriented conversions work

well for the purpose of consistency checking or matching for reuse but are not suit-

able for our knowledge acquisition purpose. Therefore, we adopt a semantic-oriented

conversion approach as in [2] [6] [22]. However, the conversion process in our work

is founded on the fundamental semantics of the typical object-oriented models as

determined by [25] [26] (see next subsection). Our conversions depend on the set of

primitive concepts and relations that underlies the requirements, which results in a

more �ne-grained and cohesive central requirements knowledge reservoir.

2.1.3 Requirements Knowledge

Research on studying the knowledge of software requirements is brie�y sur-

veyed in this subsection. In [25], Dardenne and Van Lamsweerde de�ned a concep-

tual meta-model for capturing requirements. The meta-model is based on a variety

of abstractions usually found in software requirements documents. Such abstractions

include classical concepts that already appear in many existing speci�cation lan-

guages and new concepts like goals, constraints which have been introduced in KAOS

(Knowledge Acquisition in automated speci�cation). This meta-model is aimed at

being su�ciently rich to cover all of the requirements that need to be acquired.

Davis and his colleagues [26] proposed a similar set and tried to de�ne a set

of primitive requirements elements, bonds, and composing rules that underlies all
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requirements views. In light of the above idea, requirements models of a system can

be expressed in terms of the elements and bonds from the set following the composing

rules. In this way, di�erent kinds of views are combined and related together and

changes made in one view are propagated to all other views which are de�ned based

on the same set of primitives.

The work of Diskin et al. [10] de�ned the overlaps among meta-models of di�er-

ent types of requirements analysis models (class diagram, state diagram and sequence

diagram) in an overlapping meta-model. Individual diagrams can be projected into

the space of the overlapping meta-model and then merged together. They argued

that this prede�ned central overlapping meta-model is �unavoidably minimal� since it

only de�nes the necessary common view of each type of requirements analysis model.

The CRF in our work is based on the inspiration from the above work. The

CRF we are developing in this work maintains a CGs Support where the primitive

concepts and relations underlying the object-oriented requirements analysis models

are de�ned (see details in Section 3.3). In this way, di�erent types of models can be

translated to and from CGs.

2.1.4 Summary

In this literature review section, we �rst reviewed related work using PWF and

CRF in the context of multiple-viewed requirements modeling, and then discussed

research on requirements knowledge that inspires our work.

For PWF, the research in [3] [4] [7] collaboratively carried out a well-understood

semantic description of the framework. Selonen et al. [4] also mentioned that pair-
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wise view transformations could be used to produce an initial incomplete view so that

the modeler could start to �ll in the missing requirements.

For CRF, research is divided into two camps based on di�erent conversion

strategies (see Conversion strategy column in Table 2.2). The majority of previous

work using CRF is for the purpose of checking consistency among requirements analy-

sis models and generating analysis models. CRF is not generally used for the purpose

of generating incomplete models in order to acquire more requirements knowledge.

Our work will focus on this purpose and will develop a complete description of trans-

forming UML diagrams in CRF using CGs as the common representation.

2.2 An Overview of CGs

This section provides a brief introduction to CGs, the central formalism we

adopt in CRF in this work.

2.2.1 Philosophical Foundation

CGs are powerful knowledge representation formalisms which were developed

by John F. Sowa from the existential graphs of Charles Sanders Peirce [27] and the

semantic networks [28] of arti�cial intelligence. Based on existential conjunctive �rst-

order logic, CGs express semantics in a form that is unambiguous and precise. More-

over, CGs' simple graphical notations with direct mapping to and from natural lan-

guages make CGs expressive and easy to comprehend. As a result, CGs are commonly

used as a knowledge representation and can serve as an intermediate interpretation

language between natural language and computer-oriented formalisms. Another im-
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portant feature of CGs systems is that they have open-world semantics, which allows

the speci�cation of incomplete knowledge. As a result, CGs are well suited to ex-

press the requirements of a software application. The models of a software system

can be regarded as a collection of statements that evaluate to truth, i.e., assertional

knowledge. For the CRF we are developing in this work, we adopt this simple but

competent representation to provide the basis for preserving semantics and automatic

transformations of UML diagrams.

2.2.2 Basics

Figure 2.1: A picture and its description in CGs

Two basic elements of CGs are concepts and relations. Concepts are repre-

sented by rectangles and relations are represented by ovals (Figure 2.1). A concept in

CGs means the existence of an instance of a thing, which may be an entity, an idea,

a proposition, or any other thing. A concept node is labeled by a concept type e.g.

Cat, Mat, Color and, optionally, by a referent e.g. tom. In Figure 2.1, there exist

three concepts: a cat named tom, a mat, and a color. The second basic element is

a relation which represents a relationship between existing concepts. The arcs that

link the relations to the concepts are denoted by arrows: the direction of the arrows

indicates the sense of the relation. In the above CGs, the relation on relates tom to a
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mat and the relation attribute relates that mat to a red color. The CGs in Figure 2.1

can be translated to a statement of the following form in typed predicate calculus:

(∃x : Cat,∃y : Mat, ∃z : Color)Name(x, “tom”)∧Name(z, “red”)∧On(x, y)∧

Attr(y, z)

A concept by default asserts the existence of one thing. By adding a universal

quanti�er, a concept can represent all of the instances of a certain type (Figure 2.2).

Figure 2.2: �Every cat is on a mat'' in CGs

The types of concepts in a CGs system are organized in a type hierarchy ((a)

Figure 2.3). The idea of a type hierarchy is the same as the class hierarchy in object-

oriented modeling: sub-types inherit characteristics from their super-types, forming

an �is-a-kind-of� relationship among them. Similar to the concept type hierarchy is

a hierarchy of types of relations ((b) in Figure 2.3). Please note that a concept type

is represented as a dotted rectangle with a bar at the bottom, while a relation type

is represented as a dotted oval with a bar at the bottom.

(a) (b)

Figure 2.3: Concept type hierarchy and relation type hierarchy

21



Since CGs are a form of graphical logic, another important feature of CGs is

their capability for visualized logic inference, which gives us the ability to infer knowl-

edge that is implicitly present in the knowledge reservoir. Inference is supported in

part by rules. One kind of inference rule has the form �If proposition1 then proposi-

tion2.� The conceptual graph in (a) of Figure 2.4 means �If prop1 exists, then prop2

also exists.�

(a) (b)

Figure 2.4: Inference rule in CGs

For example, the inference rule �If two persons are siblings, then there exists

another person who is their parent.� can be represented by CGs in (b) of Figure 2.4.

It is a graphical transformation that essentially accomplishes a logical inference.

A context is a concept with the nested CGs as its referent. In Figure 2.5,

the concept of type CallEvent is a context that describes a call event in a software

system.
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Figure 2.5: Context in CGs

The dashed line in (b) of Figure 2.4, called a co-reference link, denotes that

the concept Person in the consequent proposition refers to the same individual as the

concept Person: *x in the antecedent proposition box.
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CHAPTER 3

OVERVIEW OF OUR APPROACH

In this chapter, we present an overview of our research approach so that readers

can quickly get the overall idea of this work before diving into the details in the

following chapters. Section 3.1 and Section 3.2 brie�y describe the PWF and CRF

that are developed in this work; Section 3.3 presents the comparison strategy.

In this work, three types of UML diagrams are considered in both frame-

works (Figure 3.1). They are class diagrams, state diagrams, and sequence diagrams

which are among the most commonly used diagrams in UML for specifying an object-

oriented system. The reason for choosing them is that the structure, state, and in-

teraction views of a system provide a su�ciently broad range of the semantics of

object-oriented models to show the generality of our approach.

3.1 The Pair-wise Framework

As already mentioned in Chapter 2, relations between each pair of UML dia-

grams have been studied by many researchers and they collaboratively carried out a

well-understood semantic description of model transformations in PWF. Particularly,

Selonen et al. [4] mentioned that pair-wise model transformations could be used to
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Class 
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State 
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Sequence 
diagram

Conceptual
Graphs

Class
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State
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Sequence
diagram

Figure 3.1: Three UML diagrams in two frameworks

produce an initial incomplete model so that the modeler could start to �ll in the miss-

ing requirements. So the PWF in this work is developed according to transformation

rules from previous works. These rules between each pair of the three UML diagrams

are elaborated in Chapter 4.

3.2 The CGs-based Common Representation Framework

In this section, we present an overview of our CGs-based common represen-

tation framework. The framework consists of a CGs Reservoir where requirements

knowledge of UML diagrams is stored in CGs form and a CGs Support which guides

the process of converting and generating UML diagrams to and from CGs (Figure 3.2).
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CGs Reservoir

CGs Support

Phase 1: Converting UML models

to CGs (inward arrows)

Phase 2: Generating UML models

with semantic holes (outgoing 

arrows)

Model1

Model2 Model3

Figure 3.2: CGs-based CRF at work

The process of generating UML diagrams with semantic holes consists of two

major phases: Phase 1: converting already developed UML diagrams to CGs in order

to populate the CGs Reservoir (inward arrows in Figure 3.2); phase 2: generating a

speci�c type of UML diagram from the CGs Reservoir (the outgoing arrows). For

example, in Figure 3.2, Model2 and Model3 that have already been developed are

converted to CGs. Based on the requirements knowledge in the CGs Reservoir and

inference rules in the CGs Support, Model1 is generated with semantic holes for

requirements acquisition purposes. Detailed translations of UML diagrams to and

from CGs are elaborated in Section 5.1 and Section 5.2 in Chapter 5, respectively.

A requirements knowledge acquisition process then starts in which modelers provide

necessary requirements to �ll in the holes in the generated Model3, thereby resolving

the missing requirements.

The rest of this section elaborates upon a key component of the framework,

the CGs Support.
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3.2.1 The CGs Support

The CGs Support is a key component in our CRF. It de�nes, in CGs form,

semantic elements called primitives as building blocks of the three UML diagrams,

canonical graphs which are used to express the three UML diagrams in CGs, and

inference rules for generating UML diagrams from the CGs Reservoir.

3.2.1.1 The Primitives

As discussed in Chapter 2, software engineering researchers have tried to iden-

tify the minimal set of fundamental elements that underlies the requirements of an

object-oriented system [25] [26]. In the light of their work, the CGs Support of our

CRF de�nes a set of elemental concepts and relations underlying the three UML

diagrams so that any requirement captured by the three UML diagrams can be ex-

pressed in terms of the primitives. The primitives are to UML modeling languages as

assembly language statements are to high-level programming languages. The types

of primitive concepts and relations are organized in a CGs concept type hierarchy

(Figure 3.3) and a CGs relation type hierarchy (Figure 3.4), respectively.

Figure 3.3: Primitive concept type hierarchy
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The types of the primitive concepts in the CGs Support are Object, Activity,

Action,Message, Time, Signal and Number. In CGs, all concept types have a common

super type T. The Object type is the general description of something in a software

system that has state and behavior, class of every object in a software system is either

a direct or indirect descendant of the Object type. For example, classes Student and

Seminar in the University Information System are subtypes of Object type when

expressed in CGs. The Activity type is used to describe all behaviors performed by

objects in a software system. For example, enroll in a seminar and get a student's

schedule are instances of the type Activity when expressed in CGs. The Action type

describes the smallest computation unit, such as issuing and receiving messages. The

Message type describes information exchanged between objects in a software system

(note that it has two subtypes, CallMessage and SignalMessage). The Time type

describes times in a software system. The Signal and Number type describe all the

signals and numbers, respectively.

Figure 3.4: Primitive relation type hierarchy

28



Primitive relations relate primitive concepts to represent meaningful relation-

ships among them. The types of primitive relations in the CGs Support are organized

in a CGs relation type hierarchy (Figure 3.4). Figure 3.5 shows some meaningful CGs

snippets composed of primitive concepts and relations.

An attribute relation relates an Object type concept to a T type concept (see

(a) in Figure 3.5); the referent of the T type concept denotes an attribute value of

the object represented by the Object type concept. An example of this is Color:

red or Size: large. An association relation relates two Object type concepts ((b) in

Figure 3.5), and it represents the semantic relationship that can occur between two

objects in a software system. For example, a Student object is associated with a

Seminar object by enrolledIn association. An operation relation relates an Object

concept to an Activity type concept, and it depicts the relationship between an object

and its operation. The CGs (c) in Figure 3.5 means an object has the ability of

performing a certain operation. An agent relation relates an Object type concept and

an Activity type concept ((d) in Figure 3.5), and it also describes the relationship

between an object and an operation, but it means that the operation is actually

performed by an object during the execution of the system. A theme relation is

used to associate a part to the main part ((e) in Figure 3.5), such as the arguments

of an operation and the content of a message. The theme relation is di�erent from

the attribute relation in that a theme relation never relates Object type concepts.

Relation between Number type concepts is represented by arithmeticRel relation (see

(f) in Figure 3.5). A point_in_time relation relates a Proposition context to a Time

type concept. A follow relation connecting two situations expresses the meaning of
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one starts after the previous situation is done (see (g) in Figure 3.5). By introducing

the point_in_time and follow relations in our primitives, we can use a monotonic

logic like CGs to represent dynamic semantics in state and sequence diagrams.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.5: Meaningful CGs made up of primitive concepts and relations

Tthe primitive concepts and relations cannot be further decomposed (they are

the smallest semantic unit in CRF).

3.2.1.2 The Canonical Graphs

The conversion of UML diagrams to CGs in phase 1 is based on special CGs

called canonical graphs. Each type of UML diagram has a corresponding set of canon-

ical graphs that describes its semantics in CGs using primitives. Canonical graphs

are CGs used as templates to represent meaningful relationships among concepts in
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a particular type of UML diagram. The canonical graphs are not models themselves.

For example, several di�erent UML class diagrams can be converted to di�erent CGs

using the same set of canonical graphs. UML diagrams are converted into CGs by

instantiating corresponding sets of canonical graphs so that all of the semantics cap-

tured by the UML diagram are preserved in the central CGs Reservoir. For example,

a canonical graph that represents semantics of a state transition is shown in Fig-

ure 3.6. In Chapter 5, canonical graphs of class, state, and sequence diagrams are

de�ned and used to convert the three di�erent types of UML diagrams into CGs while

still preserving the semantics of the originating UML diagrams.

Figure 3.6: Canonical graph of a state transition
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3.2.1.3 The Inference Rules

The CGs Support contains rules which are used to infer requirements knowl-

edge for generating UML diagrams. The generation process is based on a forward-

chaining inference method. As in any logical inference, the presence of a rule's an-

tecedent in the CGs Reservoir implies its consequent which represents the desired

requirements knowledge used to build a target UML diagram. During this process,

for each inference rule of the target UML diagram, the CGs Reservoir is scanned to

look for CGs snippets that match the antecedent of the rule. If a match is found, the

consequent of the rule is asserted, thereby resulting in the derivation of requirements

knowledge needed for building the diagram.

To illustrate this, an inference rule of UML state diagrams is shown in Fig-

ure 3.7. When applying this rule, the CGs snippet we are looking for in the CGs

Reservoir is �an Object type concept receives a Message type concept,'' which, if

found, would imply both the existence of an Event type concept (Event concept in

Figure 3.7) and the fact that the aforementioned Object type concept is related to

a certain State concept (State concept in Figure 3.7) through currentState relation.

Note that the inferred CGs are colored in light gray in Figure 3.7. Since both State

and Event concepts are not primitives, they must be de�ned in terms of primitive

concepts and relations (see State and Event context in Figure 3.7). Such inferred

requirements knowledge is useful for building a UML state diagram. This process

continues until all inference rules of state diagrams have been applied and no more
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facts can be inferred. Then a state diagram can be built based on the requirements

knowledge thus obtained.

Figure 3.7: Event inference rule for state diagrams

In this work, for each type of UML diagram, a set of CGs inference rules is

de�ned in order to derive requirements knowledge from the CGs Reservoir to build

UML diagrams. These are explored further in Chapter 5. In this overview chapter,

we present some examples of inference rules for class diagrams in English rather than

in CGs, such as:

• An Object type concept with an attribute, operation, or association relation

implies a candidate class;

• Two Object type concepts communicating through a message imply a candidate

association between two classes.
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3.2.2 The CGs Reservoir

The CGs Reservoir stores UML diagrams in CGs form and is used to generate

UML diagrams in phase 2. Other possible uses are discussed in Section 6.6.

3.3 Comparison of the Two Frameworks

The two frameworks in this work can be used to facilitate requirements knowl-

edge acquisition. By carrying out model transformations, both are able to present a

requirements modeler with generated analysis models with semantic holes which the

modeler can start to �ll in or modify. Since they have well-de�ned semantic descrip-

tions and are based on the same semantic source (the standard UML semantics), a

comparison is possible. In order to create this comparison, we apply the two frame-

works to three non-trivial case studies, each from a di�erent application domain. The

three case studies are University Information System (UnivSys.) which is an informa-

tion system, Cryptanalysis System (Cryptanlys.) which is an AI system, and Mine

Safety Control System (MineSys.) which is a real time control system. These are

taken directly from the following books with no or minor modi�cations: The Object

Primer: Agile Model-Driven Development with UML 2.0 [29], Object-oriented anal-

ysis and design with applications [30], and Requirements Engineering: From System

Goals to UML Models to Software Speci�cations [31].

The way to conduct our experiment is shown in Figure 3.8 to Figure 3.10. In

Figure 3.8, we assume that the class diagram is not available, so state and sequence

diagrams are used to generate class diagrams with semantic holes in both frameworks;
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in Figure 3.9, the state diagram is assumed not available, so class and sequence

diagrams are used to generate state diagrams with semantic holes in both frameworks;

in Figure 3.10, the assumption is that the sequence diagram is not available, so

we can use class and state diagrams to generate sequence diagrams with semantic

holes in both frameworks. The results of working out the three case studies in both

frameworks are very lengthy (about 50 pages each), so they are put in the appendices

of this dissertation. Their structures are identical. Readers may wait to look at the

appendices when they read through Chapter 5. Based on the results in the appendices,

we can compare the two frameworks.

Class 
diagram

State 
diagram

Sequence 
diagram

CGs Reservoir

CGs Support

Class
diagram

State
diagram

Sequence
diagram

(a) (b)

Figure 3.8: The experiment part 1

We propose a set of criteria that can be used to evaluate frameworks used

for requirements knowledge acquisition, thereby compare the two frameworks in our

work. These criteria are not limited to the two frameworks developed in this dis-

sertation; they are meant to be applied to any framework that claims to address
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Figure 3.9: The experiment part 2
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Figure 3.10: The experiment part 3

the requirements knowledge acquisition problem. The criteria are divided into two

categories: quantitative and qualitative. The set of criteria is listed in Table 3.1.

The �rst two criteria are concerned with the size of the generated UML dia-

grams. For both frameworks, a generated UML diagram consists of two parts: the

missing requirements represented as semantic holes which need to be clari�ed by
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Table 3.1: Criteria for evaluating requirements acquisition frameworks

NO. Criterion name Criterion description

Quantitative criteria

1 Capability of acquir-
ing missing require-
ments

This criterion measures the number of the missing
requirements that can be potentially acquired from
a modeler given a generated UML diagram.

2 Capability of gener-
ating de�nite require-
ments

This criterion measures the number of the de�nite
requirements that is generated in a generated UML
diagram from other existing UML diagrams.

3 Percentage of the
missing requirements
in generated UML
diagrams

This criterion represents the percentage of the
missing requirements in a generated UML dia-
gram.

4 Extensibility This criterion evaluates the ability to include a new
type of UML diagram in the framework.

5 Knowledge acquisition
e�ort

This criterion measures the e�ort of eliciting
knowledge from requirements modelers.
Qualitative criteria

6 Capability of reason-
ing in requirements
knowledge

This criterion determines whether or not the
framework provides reasoning capability or not.

modelers and the de�nite requirements which are generated correctly and do not

need clari�cation. Criterion 1 measures the number of semantic holes generated and

criterion 2 measures the number of de�nite requirements generated.

Criterion 3 calculates the percentage of semantic holes in a generated UML

diagram. In other words, it measures how incomplete a UML diagram generated by

a framework is. Criterion 4 evaluates the extensibility of a framework. Criterion 5

measures the amount of e�ort it requires to complete a UML diagram with semantic

holes generated by a framework.

37



For a complete description, evaluation and comparison of the two frameworks

based on results of the three case studies, see Chapter 6.

38



CHAPTER 4

PAIR-WISE FRAMEWORK

In this chapter, pair-wise transformation rules for the three UML diagrams in

PWF ((a) of Figure 3.1) are developed and presented. The transformation process in

the framework only involves the transformation between two models:

Modelsource →Modeltarget

4.1 From Sequence Diagrams to Class Diagrams

A sequence diagram arranges a set of messages passed between objects in a

timely manner [32]. The objects represented by lifelines should be de�ned in class

diagrams, and messages between objects are treated as operations or receptions. De-

tailed transformation rules are summarized in Table 4.1.

4.2 From State Diagrams to Class Diagrams

A state diagram speci�es the sequences of states an object goes through during

its lifetime in response to events together with its responses to those events [33]. The

class of the object that a state diagram describes should be de�ned in class diagrams

and the events received by the state machine actually come from objects which are
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instances of neighboring classes. Detailed transformation rules are summarized in

Table 4.2.

Table 4.1: Rules for transforming sequence diagrams to class diagrams

Model element(s) in se-
quence diagrams

Corresponding element(s) in class dia-
grams

Lifelines Class de�nitions

Synchronous messages Operations of the receiver object's class

Asynchronous messages Receptions of the receiver object's class

Arguments of synchronous
message

Parameters of the operation and the attributes
of the sender object's class

Arguments of asynchronous
message

Attributes of a signal class and attributes of
the sender object's class

Two communicating lifelines Association between two classes

The direction of a message Association direction
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Table 4.2: Rules for transforming state diagrams to class diagrams

Model element(s) in
state diagrams

Corresponding element(s) in class di-
agrams

State machines Class de�nitions

States Values of an attribute called State

Call events Operations of the class

Signal events Receptions of the class

Change events Values of an attribute of a neighboring
class or current class

Entry, exit, do activities and
e�ects

Operations of the class

Transitions Operations named in the form �SourceS-
tateToTargetState()� of the class

Guards Values of an attribute of a neighboring
class or current class
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4.3 From Sequence Diagrams to State Diagrams

Transforming sequence diagrams to state diagrams is a classic problem. In

this work, we adopted Grønmo and Møller-Pedersen's approach [34] to transform

sequence diagrams to state diagrams. According to [34], each lifeline corresponds to

a state machine. So when producing a state machine, it is su�cient to look at the

single corresponding lifeline with its messages. An incoming arrow triggers a state

transition while an outgoing arrow is treated as the e�ect on the transition. Detailed

transformation rules in [34] are summarized in Table 4.3.

Table 4.3: Rules for transforming sequence diagrams to state diagrams

Model element(s) in sequence
diagrams

Corresponding element(s) in state diagrams

Lifelines State machines

Incoming synchronous messages Call events that trigger state transitions

Return messages Return events that trigger state transitions

Incoming asynchronous messages Signal events that trigger state transitions

Outgoing synchronous messages E�ects on the state transition (calling other object's
method)

Outgoing asynchronous messages E�ects on the state transition (a send action)

4.4 From Class Diagrams to State Diagrams

A state diagram describes the life cycle of an object during the execution of

the system. Even though the states of a state diagram can be related to values of

attributes of a class in class diagrams, it is impossible to infer the behaviors of an
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object given just the structural information. As such, we are not able to develop rules

to transform class diagrams to state diagrams.

4.5 From Class Diagrams to Sequence Diagrams

Similar to transforming class diagrams to state diagrams, it is impossible to

infer the sequential knowledge needed among objects given just the structural infor-

mation. Because of this, we are not able to develop rules to transform class diagrams

to sequence diagrams.

4.6 From State Diagrams to Sequence Diagrams

The algorithms of transforming state diagrams to sequence diagrams come

from our unpublished paper [35]. Transformation rules of model elements in state

diagrams to model elements in sequence diagrams are summarized in Table 4.3.

Table 4.4: Rules for transforming state diagrams to sequence diagrams

Model element(s) in
state diagrams

Corresponding element(s) in
sequence diagrams

State machines Lifelines

States Annotated state information be-
tween message passing along the
lifeline

Call events Synchronous messages

Signal events Asynchronous messages

Change events Combined fragments

Entry, exit, do activities
and e�ects

Execution Speci�cations

Guards Combined fragments
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However, deriving knowledge of �sequences� from a state diagram is tricky.

Since a state diagram speci�es sequences of states an object goes through during its

lifetime, this would result in multiple sequence diagrams, each of which describe one

possible state transition path. Nevertheless, it is impractical to generate and present

all of them to modelers. For the purpose of knowledge acquisition, the set of generated

sequence diagrams from a state diagram possesses the following �ve properties that

can be veri�ed in this work:

1. Each sequence diagram in the set starts with the initial state (the object is

created) and ends in a �nal state (the object is destroyed);

2. Every state transition in the state diagram is covered at least once in the set of

generated sequence diagrams;

3. The number of sequence diagrams is minimal given that property 2 is satis�ed;

4. Each sequence diagram in the set has only one lifeline which represents the

object owning the state diagram;

5. There are knowledge acquisition opportunities so the modeler is given a chance

to �ll in the missing requirements.

The above list summarizes the properties of the set of generated sequence

diagrams in this work. Property 1 makes sure that each of the generated sequence

diagrams conveys a complete scenario to the sequence diagram modeler. Property

2 and 3 guarantee that the modeler is presented with UML messages implied by

all the state transitions in state diagram; meanwhile the set of sequence diagrams
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is minimal, so it will not overwhelm the modeler. Since one state diagram only

captures the behavior of one object, property 4 says each sequence diagram only has

one lifeline. Property 5 shows the modeler knowledge acquisition opportunities in the

form of meaningful labels so that she can start �lling in semantic �holes� with the

missing requirements knowledge.

Detailed algorithms for generating a minimal set of sequence diagrams that

satisfy the �ve properties can be found in our unpublished paper [35].

4.7 Summary

In this chapter, transformation rules between each pair of the three UML

diagrams are speci�ed. Using these rules, a target UML diagram can be augmented

or generated from scratch by transforming the other two UML diagrams into the

target UML diagram. During the transformation, semantic holes are generated and

can be used as a way to make the target UML diagram more complete. At this point,

readers are able to look at the PWF portion of the three complete case studies in the

appendices, they are Section A.1, Section B.1 and Section C.1 in the appendices. As

readers can see, the PWF portion of each case study is much shorter than the CRF

portion.
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CHAPTER 5

COMMON REPRESENTATION FRAMEWORK

In Chapter 3, we gave an overview of our CRF and introduced a key compo-

nent, the CGs Support. In this chapter, we elaborate on the model transformations

in CRF. Section 5.1 shows how three types of UML diagrams are converted to CGs;

generating UML diagrams from the CGs Reservoir is presented in Section 5.2.

5.1 Converting UML Diagrams to CGs

Each type of UML diagram has a set of basic model elements upon which

the diagram is built. For example, class diagrams include a set of basic model ele-

ments such as classes, attributes, operations and associations. In CRF, for each type

of UML diagram, a set of canonical graphs is developed in which the basic model

elements are properly represented in terms of the primitive concepts and relations.

By instantiating the set of canonical graphs, the requirements knowledge of a UML

diagram is represented in CGs. In this way, a UML diagram is converted to CGs.

In this section, canonical graphs for class diagrams, state diagrams and se-

quence diagrams are developed and presented in Section 5.1.1, Section 5.1.2 and Sec-
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tion 5.1.3, respectively; the conversion process of the three types of UML diagrams

to CGs is also demonstrated.

5.1.1 Converting Class Diagrams to CGs

A class diagram describes the static view of a system in terms of collection

of declarative classes and relationships. For simplicity, the basic model elements

of class diagrams we considered in this work are classes, attributes, operations and

associations.

5.1.1.1 Canonical Graphs for Class Diagrams

The canonical graph for a class is shown in (a) of Figure 5.1. Since a class

describes a set of similar objects, the concept ClassName: @forall means �for all

objects of this class.� In this concept, ClassName denotes the name of a class and

will be replaced with the name of a real class when this canonical graph is instanti-

ated. An attribute is represented by a T type concept, which is related to the class

concept through attribute relation, while an operation is represented by an Activity

type concept, which is related to the class concept by operation relation. The asso-

ciation relates each object of this class to other objects. In (a) of Figure 5.1, only

one attribute, one operation, and one association are shown in the canonical graph.

Canonical graphs (b) and (c) of Figure 5.1 represent composition and generalization,

respectively.

The canonical graph (a) of Figure 5.1 represents �For each object of a class

ClassName (ClassName is used as a placeholder), it has an attribute of type T, an
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(a)

(b)

(c)

Figure 5.1: Canonical graphs for class diagrams

operation of type Activity and is associated with an object of type Object.� Note

that, concept types T, Activity and Object are primitive concept types in the primi-

tive concept type hierarchy (Figure 3.3), and relation types attribute, operation and

association are primitive relations de�ned in the primitive relation type hierarchy

(Figure 3.4).

5.1.1.2 Example of Class Diagrams in CGs

The class diagram of the UnivSys. is shown in Figure 5.2.

By instantiating the canonical graph for class diagrams (in this case, (a) of

Figure 5.1), the class diagram is converted to the CGs in Figure 5.3. Note that both

class diagram and its corresponding CGs are colored orange.
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1

1
instructs

0..*0..*
enrolled in

Student
-name
-studentNumber
-GPA
enrollASeminar
getSeminarsTaken

Professor
-name
-emailAddress

Seminar
-name
-capacity
-fees
addStudent
dropStudent

Figure 5.2: Class diagram of the UnivSys.

Figure 5.3: Class diagram of the UnivSys. in CGs

An interpretation of the �rst CG in Figure 5.3 is �For each Student object, it

has Name, StudentNumber and GPA as its attributes, enrollASeminar and getSemi-

narsTaken as its operations, and is associated with a set of Seminar objects.�
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5.1.2 Converting State Diagrams to CGs

A state diagram consists of states connected by transitions. The occurrence of

an event may �re a transition that causes the object to exit the current state and enter

a new state. When a transition �res, an e�ect attached to the transition is performed.

State diagrams aim at capturing all admissible sequences of state transitions. The

basic model elements of state diagrams we considered in this work are states, events,

guards, activities and transitions.

5.1.2.1 Canonical Graphs for State Diagrams

In CRF, a state diagram is viewed as a set of state transitions. Based on the

semantic descriptions of state transitions, the canonical graph for one state transition

is shown in Figure 5.4 (We have shown the canonical graph of a state transition in

Chapter 3 and reprint it here).

The canonical graph in Figure 5.4 represents �An object is in a state performing

an activity while an event occurs at time t1; the guard condition is also satis�ed, so

the object performs exit activity at time t2 and performs e�ects on the transition at

time t3; before it enters the second state at time t5, the object performs the entry

activity of the second state at time t4.�

In the canonical graph of a state transition, object owning the state machine,

e�ects on transitions, entry/exit and do activities of states are already represented

by primitive concepts such as Object and Activity. However, basic model elements

like events, states, and guards are still not expressed in primitive forms (see Event,
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Figure 5.4: Canonical graph for a state transition in state diagrams

State and Condition concepts in Figure 5.4). More canonical graphs for those model

elements are provided in Figure 5.5 to Figure 5.7.

Figure 5.5: Canonical graph for states in state diagrams

In state diagrams, a state describes a situation during the life of an object

during which it satis�es some condition, performs some do activity, or waits for some

event [32]. Performing some do activity and waiting for some event are already de�ned
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in the Pre_Transition context in Figure 5.4; satisfying some condition means that

the state variable which de�nes a state always has the same value regardless of other

state variables [31]. State variables are actually attributes of the object, so we come

up with the de�nition of a state in CGs (see Figure 5.5). For example, in a train

control system, when a train is in state DoorsClosed, the state variable doorStatus

that de�nes that state must be equal to closed. However, the knowledge of state

variable that de�nes a state is usually not available in a state diagram, so we make

the �unavailability� explicit in CGs. Such incompleteness is a perfect example of

knowledge acquisition opportunity. A state diagram modeler is encouraged to �ll it

in.

Figure 5.6: Canonical graph for guards in state diagrams

A guard condition is a Boolean expression that is part of a transition. For

simplicity, we only consider Boolean expressions which involve arithmetic relational

evaluations (Figure 5.6).

An event is something that happens during execution of a system that is worth

modeling [32]. In a state diagram, a trigger on a state transition speci�es an event

whose occurrence enables the transition. There are four kinds of events that can be

used in triggers [32]: signal event which is the receipt of a signal ((a) of Figure 5.7);

call event which is the receipt of a call ((b) of Figure 5.7); change event which is
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the satisfaction of a Boolean condition speci�ed by an expression in the event ((c)

of Figure 5.7); and time event which is the satisfaction of a time expression, such as

the occurrence of an absolute time or the passage of a given amount of time after an

object enters a state ((d) of Figure 5.7).

(a) (b)

(c) (d)

Figure 5.7: Canonical graphs for events in state diagrams

5.1.2.2 Example of State Diagrams in CGs

Based on the canonical graphs de�ned for state diagrams, one of the 14 state

transitions in the state diagram of the UnivSys., the self-transition �Open For En-

rollment to Open For Enrollment� in Figure 5.8 is represented as CGs in Figure 5.9.

Note that both state diagram and its corresponding CGs are colored green.
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student enrolled 
[seatAvailability = available] 

/ addStudent()

Open For Enrollment

entry / logSize()

Figure 5.8: A snippet of the state diagram of the UnivSys.

Figure 5.9: State transition �Open to Open� in CGs

54



Note how complicated one state transition in a state diagram is; the CGs in

Figure 5.9 re�ect the rich semantics of one state transition. Complete CGs of the

entire state diagram of the UnivSys. can be found in Appendix A.

5.1.3 Converting Sequence Diagrams to CGs

A sequence diagram speci�es an interaction where a set of messages are ex-

changed between objects in a time order [11]. Basic model elements of sequence

diagrams include lifelines, messages, and execution speci�cations. We don't consider

combined fragments like loop and alt (see Section 7.2).

5.1.3.1 Canonical Graphs for Sequence Diagrams

Based on the semantics of a sequence diagram, its CGs are composed of a

sequence of MessagePassing contexts (Figure 5.10).

Figure 5.10: A message passed between two lifelines in CGs

The canonical graph in Figure 5.10 describes the semantics of a message ex-

change between objects at a certain point in time; a Message can carry parameters.

In CRF, messages are further categorized into call messages and signal messages,

i.e., synchronous and asynchronous messages, respectively, so the canonical graph
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in Figure 5.10 is extended to two more speci�c canonical graphs (Figure 5.11 and

Figure 5.12).

Figure 5.11: Canonical graph for a call message passing

The canonical graph in Figure 5.11 represents �At time t1, one lifeline sends a

synchronous call message to another lifeline which carries out the operation speci�ed

in the message at time t2 and returns T to the sender at time t3.� Note that all the

concepts and relations in Figure 5.11 are already primitives.

The canonical graph in Figure 5.12 represents �At time t1, one lifeline sends

an asynchronous signal message to another lifeline which processes the signal at time

t2.� Since a signal message is asynchronous, there is no return message. Note that

all the concepts and relations in Figure 5.12 are already primitives.
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Figure 5.12: Canonical graph for a signal message passing

5.1.3.2 Example of Sequence Diagrams in CGs

In the UnivSys. case study, when a student wants to enroll in a seminar, the

student's quali�cation must be determined �rst. In Figure 5.13, we take a snippet of

the original sequence diagram in [4] to form a simple sequence diagram.

theStudent:Student

qualifications()

isEligibleToEnroll(theStudent)

seminar: Seminar:EnrollInSeminar
«controller»

Figure 5.13: A snippet of the sequence diagram of the UnivSys.

By instantiating the canonical graph for sequence diagrams, the sequence di-

agram in Figure 5.13 is converted to CGs in Figure 5.14. Note that both sequence

diagram and its corresponding CGs are colored cyan.
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Figure 5.14: A snippet of the sequence diagram of the UnivSys. in CGs

5.2 Generating UML Diagrams with Semantic Holes from the CGs Reser-

voir

In Section 5.1, we showed how class, state and sequence diagrams are con-

verted to CGs so that the CGs Reservoir can be populated. In this section, the CGs

Reservoir containing requirements knowledge is used to generate UML diagrams. The

generated UML diagrams contain semantic holes which provide knowledge acquisi-

tion opportunities so that eliciting new requirements knowledge becomes possible.
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The processes of generating class diagrams with semantic holes, state diagrams with

semantic holes and sequence diagrams with semantic holes are elaborated upon in

Section 5.2.1, Section 5.2.2 and Section 5.2.3, respectively.

5.2.1 Generating Class Diagrams from the CGs Reservoir

In this subsection, the CGs Reservoir is used to generate class diagrams. The

CGs Reservoir is assumed to include the requirements knowledge of state and sequence

diagrams expressed in CGs already.

5.2.1.1 Inference Rules for Class Diagrams

Inference rules for inferring requirements knowledge necessary for building

class diagrams are developed in Figure 5.15 and Figure 5.16. In these �gures, CGs in

light gray denote the inferred requirements knowledge.

The class-level inference rules in Figure 5.15 are detailed here:

• Class rule: If an Object type concept appears, then its class needs to be de�ned;

• Attribute rule: If an Object type concept is related to a concept *y through

attribute, then the concept *y is an attribute value of the class of the Object

type concept;

• Operation rule: If an Object type concept performs a Process type concept *y,

then concept *y is an operation of the class of the Object type concept;

• Association rule: If two Object type concepts have the association relation

between them, then their classes are associated.
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Class rule

Attribute rule Operation rule Association rule

Figure 5.15: Class diagram inference rule set 1

ConceptAssociation rule 1 ConceptAssociation rule 2

Figure 5.16: Class diagram inference rule set 2
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For the class-level Association rule in Figure 5.15, in order to infer an asso-

ciation relation between two concepts, two more inference rules at object-level are

needed (Figure 5.16):

• ConceptAssociation rule 1: If two Object type concepts communicate through

passing messages, then they have the association relation between them;

• ConceptAssociation rule 2: If one Object type concept can access the attribute

of another, then they have the association relation between them.

5.2.1.2 Inferring Class Diagrams from CGs

We will now demonstrate how to use class diagram inference rules to infer

requirements knowledge for building class diagrams. The CGs Reservoir already con-

tains requirements knowledge of the state and the sequence diagrams of the MineSys.

case study. For simplicity, only one inferred class is shown in this subsection. See

Appendix C for the complete generated class diagram of Mine Safety Control System.

ConceptAssociation rule 1 and ConceptAssociation rule 2 are �rst applied to

the current CGs Reservoir to look for associations among objects. Then we apply the

�rst rule set to infer the class CGs model.

In Figure 5.17, for class HighWaterSensor, three attributes and nine operations

are inferred from the CGs Reservoir; two neighboring classes are also inferred.

The generated CGs in Figure 5.17 are then translated back to UML class

diagram notations (Figure 5.18). Besides some de�nite requirements just mentioned,

several semantic holes are generated: attributes and operations in class Sump and
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Figure 5.17: Generated CGs class model after applying inference rules

SafetyController, and their associations with class HighWaterSensor need to be

�lled in; two attributes State_hWsOffDefAttr and State_hWsOnDefAttr in class

HighWaterSensor need to be clari�ed; operations like doActivity_hWsOff need to

be renamed.

This generated incomplete diagram clearly shows a knowledge acquisition op-

portunity: a class diagram modeler presented with the generated class diagram in

Figure 5.18 can �ll in the semantic holes by providing additional information. A pos-

sible class diagram after resolving semantic holes by a class diagram modeler is shown

in Figure 5.19. Note that the two state variables inferred by two states hWsOff (high

water signal o�) and hWsOn (high water signal on) are considered unnecessary since

the inferred attribute HighWaterSignal can be the state variable of both states. By
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? ?
association

HighWaterSensor
-HighWaterSignal: {on, off}
-State_hWsOffDefAttr?
-State_hWsOnDefAttr?
«operations from SM»
doActivity_hWsOff
exitActivity_hWsOff
effect_hWsOffTohWsOn
entryActivity_hWsOn
doActivity_hWsOn
exitActivity_hWsOn
effect_hWsOnTohWsOff
entryActivity_hWsOff

«send operation»
issueSignalMessage()

? ?
association

Sump
-WaterLevel
?

SafetyController
?
?

Figure 5.18: Generated class diagram with semantic holes

prompting the e�ects on transitions and activities in states, a class modeler provides

the operations in class HighWaterSensor. Class Sump and SafetyController are

also made more complete. The two associations are named; arities and navigations

are made clear.

1 0..*
Control

HighWaterSensor
-HighWaterSignal: {on, off}
measure()
turnHighWaterSignalOn()
turnHighWaterSignalOff()
sendHighWaterSignal()

1 1
Tracking

Sump
-WaterLevel

SafetyController

turnWaterSensorOn()
turnWaterSensorOn()
resetWaterSensor()

Figure 5.19: Class diagram after completion
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Thus the generated incomplete model has ful�lled its purpose of inviting the

modeler to provide additional requirements knowledge which will become a part of

the collection of models for a given system being developed.

5.2.2 Generating State Diagrams from the CGs Reservoir

In this subsection, the CGs Reservoir is used to generate state diagrams. The

CGs Reservoir is assumed to include the requirements knowledge of class and sequence

diagrams expressed in CGs already.

5.2.2.1 Inference Rules for State Diagrams

Since events may trigger state transitions in a state diagram, the key to gener-

ating a state diagram is to look for events in the CGs Reservoir. The rule for inferring

a message event is shown earlier in Figure 3.7 in Section 3.2.1.2. In a state diagram,

there are several kinds of events: call events, signal events, change events, and time

events. Both call and signal events are kinds of message events; their inference rules

are shown in Figure 5.20 and Figure 5.21, respectively. However, our current CRF

cannot support inferring change and time events.

The call event rule in Figure 5.20 represents �If in the CGs Reservoir, an

object receives a call message, then this object is in a certain state and there exists

a CallEvent ; the state needs to be de�ned in terms of the attributes of the object.�

Note that the inferred concepts and relations are colored in light gray in Figure 5.20.
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Figure 5.20: Call event rule

Figure 5.21: Signal event rule

The signal event rule in Figure 5.21 represents �If in the CGs Reservoir, an

object receives a signal message, then this object is in a certain state and there exists

a SignalEvent ; the state needs to be de�ned in terms of the attributes of the object.�
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5.2.2.2 Inferring State Diagrams from CGs

We will now demonstrate how to use state diagram inference rules to infer

requirements knowledge for building state diagrams. The CGs Reservoir contains

requirements knowledge of the class and the sequence diagrams of the UnivSys. and

we try to infer the state machine of the Seminar object. So the Object type concept in

the call event inference rule in Figure 5.20 has been instantiated to Seminar: seminar

(Figure 5.22).

Figure 5.22: Instantiated call event inference rule

The instantiated inference rule is then applied to the current CGs Reservoir.

New requirements knowledge (shown as gray concepts and relations in Figure 5.23)

is added to the existing CGs in the CGs Reservoir (shown as cyan concepts and rela-

tions). We want to remind readers that cyan represents the requirements knowledge

of sequence diagrams in the CGs Reservoir.
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Figure 5.23: Augmented CGs model after applying the instantiated call event inference rule
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Two pieces of state information, S1 and S2, are inferred. When the CGs in

Figure 5.23 are transformed back to the UML state diagram notations (Figure 5.24),

state S1 shows a transition to S2 responding to the call event isEligibleToEnroll,

and S2 shows a transition to some unknown state that responds to the return value

of the qualifications operation. Several semantic holes are thus identi�ed: the

missing de�nitions of state S1 and S2, the entry/exit, and do activities of the two

states, the conditions (guards) of the two transitions, and the target state of the

transition from S2.

Seminar State S2 definition:
{
Attr: ?
}

Seminar State S1 definition:
{
Attr: ?
}

event by return of theStudent.qualification()
[condition?] / effect?

?

entry / ?
do / activity?
exit / ?

isEligibleToEnroll(theStudent) 
[condition?] / isEligibleToEnroll(theStudent) 

S2

entry / ?
do / activity?
exit / ?

S1

entry / ?
do / activity?
exit / ?

Figure 5.24: Generated state diagram with semantic holes

This generated incomplete diagram clearly shows a knowledge acquisition op-

portunity: a state modeler presented with the state model in Figure 5.24 can �ll in

the semantic holes by providing additional information. A possible state diagram

after resolving semantic holes by a state diagram modeler is shown in Figure 5.25.

Note that the unknown state with a question mark in Figure 5.24 is split into two

states: EnrollStudent and UnableToEnroll based on the di�erent return value of

qualification. Also, a new attribute of the Seminar class seatAvailability is
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needed in order to de�ne state OpenForEnrollment. When the more complete state

diagram in Figure 5.25 is converted back to CGs, such knowledge will be used to

augment the class model CGs for further inferences.

IneligibleToEnroll

UnableToEnroll

do / notify()

OpenForEnrollment def:
{
seatAvailability = available
}

EligibleToEnroll

EnrollStudent

do / addStudent()

isEligibleToEnroll(theStudent) 
[seatAvailability = available] 

/ isEligibleToEnroll(theStudent)

Verification

do / theStudent.qualification()

OpenForEnrollment

entry / logSize()

Figure 5.25: Augmented CGs model after applying call event inference rule

Thus the generated incomplete model has ful�lled its purpose of inviting the

modeler to provide additional requirements knowledge which will become a part of

the collection of models for a given system being developed.

5.2.3 Generating Sequence Diagrams from the CGs Reservoir

In this subsection, the CGs Reservoir is used to generate sequence diagrams.

We assume that the CGs Reservoir includes the requirements knowledge of class and

state diagrams expressed in CGs already.

5.2.3.1 Inference Rules for Sequence Diagrams

Since sequence diagrams describe messages passing among objects, the key to

generating sequence diagrams is to look for messages and their temporal sequences in

the CGs Reservoir. Luckily, both Message and Time are primitives, so they do not

need to be inferred from the CGs Reservoir. However, inference rules for sequence
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diagrams are still needed to make the generation easier. In Figure 5.26, two inference

rules are developed to infer sender or receiver when a message is found in the CGs

Reservoir.

Figure 5.26: Sequence diagram inference rule set

5.2.3.2 Inferring Sequence Diagrams from CGs

We will now demonstrate how to use sequence diagram inference rules to gen-

erate sequence diagrams from the CGs Reservoir. The CGs Reservoir contains re-

quirements knowledge of the class diagram and the state diagram of the UnivSys.

case study.

The inference rules in Figure 5.26 are used to make sure that every message

found in the CGs Reservoir has both a sender and a receiver. Once this is done,

we can extract all sequences (temporal sequences) from the current CGs Reservoir.

Because of the size of this model, the generated sequence CGs model is shown in two

�gures (Figure 5.27 and Figure 5.28).
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Figure 5.27: Generated CGs sequence model part 1
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Figure 5.28: Generated CGs sequence model part 2
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New requirements knowledge (shown as gray concepts and relations) is added

to the existing CGs in the CGs Reservoir (shown as green concepts and relations).

We want to remind the readers that green represents the requirements knowledge of

state diagrams in the CGs Reservoir.

The generated CGs in Figure 5.27 and Figure 5.28 are then translated back to

UML sequence diagram notations (Figure 5.29). Several semantic holes are identi�ed:

unknown lifelines sending messages to Seminar need to be �lled in and multiple

execution speci�cations along the lifeline of Seminar need to be renamed.

This generated incomplete diagram clearly shows a knowledge acquisition op-

portunity: a sequence diagram modeler presented with the generated sequence dia-

gram in Figure 5.29 can �ll in the semantic holes by providing additional informa-

tion. A possible sequence diagram that might result from resolving semantic holes

by a sequence diagram modeler is shown in Figure 5.30. Note that the three dif-

ferent lifelines sending Scheduled, Open, and Closed messages are merged into one

lifeline SeminarEnrollment whose role is as a controller. New messages like create

and considerSplit are added. A combined fragment alt frame with two guards is

added to make the scenario more reasonable. Several entry, exit, do activities and

effects are either deleted after consideration or renamed.

Thus the generated incomplete model has ful�lled its purpose of inviting the

modeler to provide additional requirements knowledge which will become a part of

the collection of models for a given system being developed.
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Figure 5.29: Generated sequence diagram with semantic holes
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Figure 5.30: Sequence diagram after completion
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5.3 Summary

By now, we have �nished the development of CRF using CGs as a common

representation of UML diagrams of a system. With CRF, UML diagrams in the

requirements �ecosystem� can be converted to CGs according to canonical graphs and

the CGs can be translated back to UML diagrams according to inference rules. During

the transformation, semantic holes are identi�ed and used as knowledge acquisition

opportunities to acquire more requirements from UML diagram modelers. At this

point, readers are able to look at the CRF portion of the three complete case studies

in the appendices, they are Section A.2, Section B.2 and Section C.2 in the appendices.

As readers can see, the CRF portion of each case study is much longer than the PWF

portion.
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CHAPTER 6

A COMPARISON OF THE TWO FRAMEWORKS

In this work, two frameworks that can facilitate requirements acquisition dur-

ing multiple-viewed requirements modeling have been proposed and carefully de-

scribed in previous chapters. By carrying out di�erent kinds of transformations,

both frameworks can present requirements modelers with generated analysis models

that have semantic holes so that they can start to �ll in those holes or modify them.

Since the two frameworks have well-de�ned model transformation processes and are

based on the same semantics of UML diagrams, a comparison is possible. As already

mentioned in Chapter 3, we have applied the two requirements acquisition frameworks

to three non-trivial case studies. The three case studies have gone through the trans-

formation processes as described in Chapter 4 and Chapter 5 manually. The results

of the three case studies are quite lengthy and therefore are shown in the appendices.

The comparison of the two frameworks in this chapter is based on the those results.

In this chapter, we propose a set of framework-independent criteria (Table 6.1)

that can be used to evaluate the e�ectiveness in transforming and acquiring require-

ments knowledge in the two frameworks; we then compare them based on the eval-

uation results. Note that Table 3.1 in Chapter 3 is reprinted here for convenience.
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These criteria are not limited to the two frameworks developed in this dissertation;

they are meant to be applied to any framework that claims to address the require-

ments knowledge acquisition problem in the context of multiple-viewed requirements

modeling. The criteria are divided into two categories: quantitative and qualitative.

Section 6.1 to Section 6.6 present the comparison results of each criterion based on

the results of the three case studies in the appendices.

Table 6.1: Criteria for evaluating requirements acquisition frameworks

NO. Criterion name Criterion description

Quantitative criteria

1 Capability of acquiring
missing requirements

This criterion measures the number of the missing
requirements that can be potentially acquired from
a modeler given a generated UML diagram.

2 Capability of generating
de�nite requirements

This criterion measures the number of the de�nite
requirements generated in a generated UML dia-
gram from other existing UML diagrams.

3 Percentage of the miss-
ing requirements in gen-
erated UML diagrams

This criterion represents the percentage of the
missing requirements in a generated UML dia-
gram.

4 Extensibility This criterion evaluates the ability to include a new
type of UML diagram in the framework.

5 Knowledge acquisition
e�ort

This criterion measures the e�ort of eliciting
knowledge from requirements modelers.

Qualitative criteria

6 Capability of reasoning
in requirements knowl-
edge

This criterion determines whether or not the
framework provides reasoning capability or not.
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6.1 Capability of Acquiring Missing Requirements

Both frameworks can generate UML diagrams with semantic holes. Since the

presence of semantic holes indicates the possible missing requirements knowledge, a

high number of semantic holes in a UML diagram is a sign that more requirements

knowledge will be potentially acquired from a modeler. This criterion evaluates the

capability that a framework has to acquire the missing requirements. This is mea-

sured by counting the number of semantic holes in the UML diagrams generated by

a framework. An advantage of counting semantic holes is that this only depends on

the representation of UML diagrams and not on any subjective judgment of incom-

pleteness or experience of requirements modelers, since these requirements (semantic

holes) are missing for sure, and need to be provided by the requirements modeler.

During the comparison, given the same state and sequence diagrams of a

software system, two class diagrams are generated by PWF and CRF, respectively;

then the number of semantic holes yielded in each of the two generated class diagrams

is counted (see the �ve rows under the gray row �In generated class diagram� in

Table 6.2). The same comparison process works for generating state and sequence

diagrams (see the rest of Table 6.2). The complete results of evaluating the generated

class, state and sequence diagrams for three case studies in two frameworks are listed

in Table 6.2.
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Table 6.2: Comparison of the capability of acquiring missing requirements in two frameworks

PWF CRF

Semantic holes UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

In generated class diagram

Number of unknown class names 7 8 4 7 8 6

Number of unknown attribute names 0 0 0 15 20 25

Number of unknown operation names 13 14 27 49 59 81

Number of unknown association names 12 11 13 12 11 15

Total 32 33 44 83 98 127
In generated state diagram

Number of unknown/potential states 20 18 19 20 18 13

Number of unknown transitions 4 3 5 5 4 3

Number of unknown events 5 3 2 5 4 3

Number of unknown e�ects 0 0 0 7 7 5

Number of unknown guards 0 0 0 15 14 10

Number of unknown entry/exit, do activities 0 0 0 60 54 39

Number of state invariants 0 0 0 10 10 7

Total 29 24 26 122 112 80
In generated sequence diagram

Number of unknown neighboring lifelines 6 8 8 6 7 8

Number of unknown messages 0 1 0 0 0 0

Number of unknown execution specs 0 0 0 25 37 58

Total 6 9 8 31 44 66
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6.1.1 Quality of the Semantic Holes Generated by CRF

During the comparison of criterion 1, we found that in CRF, semantic holes are

generated in two ways: by instantiating canonical graphs and by knowledge inference

(Table 6.3).

Table 6.3: Types of semantic holes in generated UML diagrams by CRF

Semantic holes category Source

Potentially useful semantic holes By canonical graphs (template)

Obviously useful semantic holes By knowledge inference

In CRF, the canonical graphs are used to translate UML diagrams to CGs;

readers may have already realized that canonical graphs are actually templates that

represent the expected concepts and relations of a UML diagram when it is translated

in CGs form. So the presence of un�lled slots in canonical graphs indicates the incom-

pleteness of a UML diagram. For example, by instantiating the canonical graph of a

state transition (Figure 6.1), the states involved in a transition in the state diagram

are asserted to own do activity, entry/exit activity, and the state transition is

asserted to own event, guard, effect, even if those model elements were originally

not in the state diagram. For example, Figure 6.2. This is not to say that they must

be speci�ed in this UML diagram; the value of potentially useful holes is that the

modelers can be made aware of the model elements that are necessary to construct

a UML diagram [6]. Semantic holes generated by instantiating canonical graphs are
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called potentially useful semantic holes, since they probably turn out to be empty

and deleted by the modeler.

Figure 6.1: Template nature of the canonical graph of UML diagram

The other kind of semantic holes is generated by applying inference rules de-

�ned in the CGs Support. For example, the inference rule in Figure 6.3 will assert the

existence of a sender concept given the fact that a Message type concept is received

by a Object type concept. Such semantic holes are called obviously useful semantic

holes in this work since they are guaranteed to exist and must be �lled explicitly by

a modeler. An obviously useful semantic hole is more valuable than a potentially
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Figure 6.2: Potentially useful semantic holes

useful semantic hole. The percentage of the obviously useful semantic holes and the

potentially useful semantic holes in generated UML diagrams is shown in Table 6.4.
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Figure 6.3: Obviously useful semantic holes

Table 6.4: Percentage of two kinds of semantic holes in generated UML diagrams
by CRF

Generated Potentially useful semantic holes Obviously useful semantic holes

UML
diagrams

UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

Class dia-
gram

55.4% 55.1% 57.5% 44.6% 44.9% 42.5%

State dia-
gram

71.3% 71.4% 71.2% 28.7% 28.6% 28.8%

Sequence
diagram

80.6% 84.1% 87.9% 19.4% 15.9% 12.1%
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As we can see from Table 6.4, potentially useful semantic holes account for

a large portion of the overall semantic holes generated by CRF. Since PWF in this

work does not generate potentially useful semantic holes, for the sake of fairness,

we conducted the comparison again after subtracting potential useful semantic holes

(Table 6.5).

Table 6.5: Comparison of the capability of acquiring missing requirements in two
frameworks without considering potentially useful semantic holes

Generated PWF CRF

UML
diagrams

UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

Class dia-
gram

32 33 44 37 44 54

State dia-
gram

29 24 26 35 32 23

Sequence
diagram

6 9 8 6 7 8

6.2 Capability of Generating De�nite Requirements

In a generated UML diagram, besides semantic holes, there are newly gener-

ated requirements that we are sure of based on inference rules. These requirements

are called de�nite inferred requirements and do not need further clari�cation by mod-

elers. This criterion evaluates the capability that a frameworks has to acquire the

de�nite requirements knowledge. This is measured by counting the number of de�nite

model elements in the UML diagrams generated by a framework. Similar to criterion
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1, during the comparison, UML diagrams are generated by PWF and CRF, respec-

tively, but then we count the number of new de�nite model elements yielded in the

generated UML diagrams. The results of evaluating the generated class, state and

sequence diagrams for three case studies in two frameworks are listed in Table 6.6.
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Table 6.6: Comparison of the capability of generating de�nite requirements in two frameworks

PWF CRF

Semantic holes UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

In generated class diagram

Number of de�nite classes acquired 5 4 8 5 4 8

Number of de�nite attributes acquired 2 3 11 1 2 5

Number of de�nite operations acquired 11 9 0 10 9 0

Number of de�nite association names acquired 0 0 0 0 0 0

Total 18 16 19 16 15 13
In generated state diagram

Number of de�nite state machines 5 4 5 5 4 5

Number of de�nite states 0 0 0 0 0 0

Number of de�nite transitions 15 14 9 10 10 7

Number of de�nite events 10 8 7 10 10 7

Number of de�nite e�ects 9 9 7 9 9 5

Total 39 35 28 34 33 22
In generated sequence diagram

Number of de�nite sequences 4 2 4 9 9 11

Number of de�nite messages 6 6 6 6 6 6

Number of de�nite execution specs 5 4 0 5 3 0

Number of de�nite states 6 10 14 6 10 14

Number of de�nite combined fragments 2 2 10 0 0 0

Total 23 24 34 26 28 31
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6.3 Percentage of the Missing Requirements in Generated UML Dia-

grams

This criterion evaluates the incompleteness of the UML diagrams generated

by PWF and CRF. The incompleteness of a generated UML diagram is the number

of semantic holes over the number of overall generated model elements in a generated

UML diagram. The results of evaluating the incompleteness of generated class, state,

and sequence diagrams for three case studies in two frameworks are listed in Table 6.7.

For example, for the generated class diagram of the UnivSys. by CRF, it is 83.84%

incomplete and 16.16% complete.

Table 6.7: Comparison of incompleteness of generated UML diagrams by two frame-
works

Generated PWF CRF

UML
diagrams

UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

Class dia-
gram

64.00% 42.65% 20.69% 83.84% 78.21% 54.39%

State dia-
gram

67.35% 40.68% 27.27% 86.73% 77.24% 61.11%

Sequence
diagram

69.84% 48.15% 19.05% 90.71% 78.43% 68.04%

6.4 Extensibility

In this work, we choose three types of UML diagrams for both frameworks.

However, more UML diagrams can be added to expand the frameworks. This criterion
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evaluates the extensibility of a framework by measuring the amount of e�ort needed

to introduce another type of UML diagram (activity diagram) in both frameworks.

For simplicity, only limited model elements in activity diagrams are considered:

• Activity partitions;

• Activity nodes and control �ows;

• Forking and joining.

6.4.1 Adding Activity Diagrams to PWF

This subsection describes the process of accommodating activity diagrams in

PWF.

6.4.1.1 From Activity Diagrams to State Diagrams

A UML activity diagram speci�es an activity in which multiple objects are

involved and data would be created or modi�ed. Each �ow transition may a�ect

several objects' state machines. Multiple state machines then will be generated from

one activity diagram. Detailed transformation rules are summarized in Table 6.8.

6.4.1.2 From State Diagrams to Activity Diagrams

In a state diagram, only one object is considered; this object might stay in a

state waiting for triggering events without performing any activity or it might perform

an ongoing activity until completion or being interrupted when triggering events
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Table 6.8: Rules for transforming activity diagrams to state diagrams

Model element(s) in ac-
tivity diagrams

Corresponding element(s) in
state diagrams

Activity partitions Di�erent state machines

Activity nodes States with a do activity

Send nodes Send actions

Receive nodes Triggers for state transitions

Control �ows Completion transitions

occur. As a result, knowledge of activity nodes and their ordering can be derived

from state diagram. Detailed transformation rules are summarized in Table 6.9.

Table 6.9: Rules for transforming state diagrams to activity diagrams

Model element(s) in
state diagrams

Corresponding element(s) in
activity diagrams

State machines Activity partitions

Signal events Receive nodes

Entry/exit, do activities
and e�ects

Activity nodes

State transition paths Control �ow paths

6.4.1.3 From Activity Diagrams to Class Diagrams

In an activity, multiple objects are involved and some data objects would

be created or modi�ed. Such information should be described in a class diagram.

Detailed transformation rules are summarized in Table 6.10.
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Table 6.10: Rules for transforming activity diagrams to class diagrams

Model element(s) in ac-
tivity diagrams

Corresponding element(s) in class dia-
grams

Activity partition Class de�nitions

Activity nodes Operations of the class

Control �ows A �ow edge across activity partitions indi-
cates association between classes

Control nodes Variables in control nodes are treated as at-
tributes of the class

Object �ows Objects produced and consumed in the ac-
tivity diagram are treated as classes

6.4.1.4 From Class Diagrams to Activity Diagrams

In a class diagram, objects with the same attributes and behaviors are de-

scribed by a class. The relationships between di�erent objects are described by the

relationships between their corresponding classes. Figuring out the orders of actions is

an important part of deriving activity diagrams from class diagrams. However, similar

to transforming class diagrams to state diagram or sequence diagram in Chapter 4,

it is impossible to infer the control �ow knowledge needed among actions given just

the structural information. As a result, we could not develop rules to transform class

diagrams to activity diagrams.

6.4.1.5 From Activity Diagrams to Sequence Diagrams

Activity diagrams and sequence diagrams have many things in common. De-

tailed transformation rules are summarized in Table 6.11.
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Table 6.11: Rules for transforming activity diagrams to sequence diagrams

Model element(s) in ac-
tivity diagrams

Corresponding element(s) in
sequence diagrams

Activity partitions Lifelines

Activity nodes Execution speci�cations

Send nodes Asynchronous outgoing messages

Receive nodes Asynchronous incoming messages

Control �ows Sequence of messages

6.4.1.6 From Sequence Diagrams to Activity Diagrams

Detailed transformation rules are summarized in Table 6.12.

Table 6.12: Rules for transforming sequence diagrams to activity diagrams

Model element(s) in se-
quence diagrams

Corresponding element(s) in
activity diagrams

Lifelines Activity partitions

Synchronous messages Activity nodes

Asynchronous messages Send nodes

Synchronous message argu-
ments

Object �ows

Asynchronous message ar-
guments

Object �ows

Return message with value Object �ows

Sequence of messages Control �ows

6.4.2 Adding Activity Diagrams to CRF

When a new type of UML diagram is introduced in CRF, the CGs Support

needs to be extended to support the conversion and generation of the new UML
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diagram. In particular, new primitives are added to facilitate the conversion process

and new inference rules are developed to support the generating process. By studying

the semantics of activity diagrams [32], we try to represent each model element of

activity diagrams using the current primitives in the CGs Support. If a model element

cannot be represented, then new primitives need to be added.

Activity nodes are the basic elements of activity diagrams. We can use the

primitive type Activity to describe activity nodes in activity diagrams. The activity

nodes within an activity may be organized into partitions, often called swimlanes. In

CRF, we use primitive type Object to represent activity partitions. Control �ow that

connects activity nodes is represented by primitive type Time and primitive relations

point_in_time and follow in CRF. CGs in Figure 6.4 represents two activity nodes

connected by a �ow and organized in two di�erent partitions.

Figure 6.4: Canonical graph for activity nodes and control �ows

Besides regular activity nodes, there are special activity nodes in activity di-

agrams: send and receive signals (see Figure 6.5).
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Figure 6.5: Canonical graph for sending and receiving signals

Concurrency is an important feature in activity diagrams and is represented

by forking and joining in Figure 6.6.

Figure 6.6: Canonical graph for forking and joining
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Inference rules for generating an activity diagram's CGs model are developed

by considering the semantics of an activity diagram. Particularly, we look for the

primitive concept Activity and Action in the CGs Reservoir. The objects that perform

them will become di�erent activity partitions in the activity diagram.

6.4.3 Comparison of Extensibility

In summary, the e�ort involved in extending a framework to accommodate a

fourth UML diagram is compared in Table 6.13.

Table 6.13: Comparison of extensibility of the two frameworks

Development e�ort PWF CRF

New rules developed 26 4

6.5 Knowledge Acquisition E�ort

This criterion is used to evaluate and compare the amount of e�ort needed to

complete semantic holes in the UML diagrams generated by PWF and CRF. When a

modeler is presented with UML diagrams with semantic holes, he/she needs to look

at each hole and choose to either �ll it in or delete it. So, in this work, the knowledge

acquisition e�ort is measured by counting the number of semantic holes that needed

to be considered (Table 6.14).
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Table 6.14: Comparison of the knowledge acquisition e�ort needed in UML diagrams
generated by two frameworks

Generated PWF CRF

UML
diagrams

UnivSys. Cryptanlys. MineSys. UnivSys. Cryptanlys. MineSys.

Class dia-
gram

32 33 44 83 98 127

State dia-
gram

29 24 26 122 112 80

Sequence
diagram

6 9 8 31 44 66

6.6 Capability of Reasoning in Requirements Knowledge

During the model transformation process, the CRF results in a central CG

Reservoir which contains the requirements knowledge of UML diagrams. This knowl-

edge reservoir can be used for other purposes, such as inconsistency checking, require-

ments integration, and inquiry. The PWF does not have this advantage.

6.7 Summary

In this chapter, we conducted a comparison of the PWF and CRF according to

the six criteria we proposed. Criterion 1 compared the capability of acquiring missing

requirements of the two frameworks; based on the results of applying both frameworks

to three case studies, the CRF outnumbered the PWF in all generated UML diagrams

in three case studies (see Table 6.2). In other words, using CRF, more possible

requirements may be acquired from a modeler in the multiple-viewed requirements

96



modeling context. Readers may argue that a portion of the semantic holes generated

in CRF (see Table 6.4) is due to the template nature of canonical graphs (such holes

are called potentially useful semantic holes), so, by instantiating a canonical graph,

many �slots� are inferred. For fairness, we compared the two frameworks again in

Table 6.5 without considering the potentially useful holes generated in CRF and

found that the CRF still outnumbered the PWF. However, we �rmly believe that the

potential useful semantic holes are useful for the purpose of knowledge acquisition.

We have no way to measure the usefulness of a potential useful semantic hole as this

is out of scope in the current work.

Criterion 2 compared the capability of generating de�nite requirements in

the two frameworks; based on the results of applying both frameworks to three case

studies, PWF outnumbered CRF in all generated UML diagrams in three case studies.

In other words, using PWF, more determined requirements can be generated. This

implies that PWF is better at generating target models from source models.

Built upon the previous two criteria, the comparison based on criterion 3 shows

that UML diagrams generated in CRF are generally more incomplete than in PWF.

This matches our �rst conclusion that CRF is more capable of exposing knowledge

acquisition opportunities in the multiple-viewed requirements modeling context.

Criterion 4 is crucial for framework developers since a framework grows when

new types of diagrams are introduced; based on our experiment of accommodating

activity diagrams in both frameworks, CRF is clearly more extensible than PWF. This

advantage becomes more evident when a framework supports more UML diagrams.
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More knowledge acquisition opportunities mean more e�ort involved in re-

solving them. In CRF, a modeler has to go through each semantic hole, particularly

potential useful holes to decide if it is indeed a semantic hole. We conclude that

it takes more time to complete a UML diagram generated by CRF than by PWF

because more holes need to be taken into account.

Besides requirements acquisitions, CRF has the advantage of reasoning on the

knowledge base. Criterion 6 indicates that more reasoning can be performed on the

CGs Reservoir. However, PWF does not have any knowledge repository; it is purely

used for model transformations.
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CHAPTER 7

DISCUSSION

In this chapter, we discuss the strengths and limitations of this work, explain

some questions that readers may have, and point to future work.

7.1 Two well-founded frameworks for requirements acquisition

In this work, two frameworks (PWF and CRF) are developed to generate UML

diagrams with semantic holes for the purpose of requirements knowledge acquisition.

They are well-founded and based on the standard UML semantics. Our evaluation

and comparison have shown their e�ectiveness in requirements acquisition in multiple-

viewed requirements modeling.

The PWF depends on pair-wise transformation rules and is quite straightfor-

ward. The design of CRF in this work, however, needs some discussion here. The

CGs Reservoir in CRF can be considered heterogeneous in that it is able to store

requirements knowledge from di�erent types of UML diagrams, each of which con-

veys quite di�erent requirements; it also can be considered a homogeneous knowledge

reservoir since all requirements knowledge is represented using the same set of prim-

itive concepts and relations which is fundamental in an object-oriented requirements
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speci�cation. In other words, for each requirement in the UML diagrams we used

in this work, its semantics can be represented by a CG that uses only the concepts

and relations in the Primitives of the CGs Support. This feature is crucial in our

work, since the CGs Reservoir only needs to deal with CGs constructed from the

primitive concepts and relations. The usage of primitives as the foundation of con-

verting from UML diagrams to CGs greatly reduces the complexity of the resulting

CGs Reservoir and achieves a �ne-grained and cohesive central requirements knowl-

edge reservoir. This is a signi�cant improvement and simpli�cation of previous work,

especially in [2]. In this work, the primitives we developed are not tied to a speci�c

kind of UML diagram and they are well justi�ed from previous work on underlying

elements in software requirements [25] [26].

7.2 Limitations of the CRF

The current primitive concepts and relations work well for the three kinds of

UML diagrams. We do not claim the completeness of this set of primitives, since we

have not considered all UML diagrams, and, furthermore, the current primitives and

canonical graphs are not su�cient to convert some complex model elements used in

the three UML diagrams we have considered. For example, we do not yet support

converting association classes in class diagrams, combined fragments like loop and

alt in sequence diagrams, or nested states, concurrent states, and history states in

state diagrams. New primitive concepts and relations must be added in future to

accommodate those features.
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The current work assumes its input UML diagrams are syntactically and se-

mantically correct. In other words, they are well-formed according to UML syntactic

constraints. If errors exist, those errors will be converted to CGs and then used to

infer incorrect or badly formed requirements knowledge. It is possible that automatic

inference techniques in CGs would be able to detect these, but that is clearly beyond

the scope of the current work. Also, retracting the CGs inferred from this wrong

knowledge is a time-consuming and complex task that the current framework can-

not handle. We consider this a minor limitation, since existing UML tools are quite

capable of ensuring valid UML diagrams are produced before we ever attempt our

translation into CGs.

Another current limitation is the lack of automation support. Of course, man-

ually converting UML diagrams of a system under development to CGs and manually

generating new UML diagram from CGs Reservoir would both be tedious and error-

prone processes. Future work obviously will focus on automating these.

7.3 Two Types of Semantic Holes in CRF

For criterion 1 (Capability of acquiring missing requirements), CRF greatly

outnumbered PWF in all UML diagrams in three case studies (see Table 6.2) because

a large portion of semantic holes are generated by asserting canonical graphs (see

Section 6.1.1). They are named potential usefully semantic holes in that many of

them may turn out to be empty and discarded. For example, not all state transi-

tions have guards and e�ects. However, we still believe that these potentially useful

semantic holes are �useful� for the purpose of knowledge acquisition. The real value
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of potentially useful holes is the thinking behind them. A potentially useful semantic

hole may not be a real missing requirement in a target UML diagram, but it might

provide enough insight to elicit requirements. In the current work, we have no way to

measure the usefulness of a potentially useful semantic hole. One promising approach

is that we can introduce weighted semantic holes in the CRF; the weight represents

the quality of the semantic hole. In other words, the higher the weight is, the more

likely the semantic hole is useful. The weight can be obtained by querying in a large

requirements library with similar projects.

7.4 Supporting Other UML Diagrams in Two Frameworks

More UML diagrams can be added in our knowledge acquisition frameworks.

We already outlined an extensibility approach in Section 6.4. We intend to continue

that approach to introduce more UML diagrams in both frameworks such as object

diagrams, communication diagrams, and use case diagrams. For PWF, several pre-

vious work has already �gured out the pair-wise transformation rules, but, for CRF,

we need to �gure out how to translate those UML diagrams to and from CGs. Here

is our initial approach: object diagrams consist of objects and links that can be rep-

resented as Object type concepts and association type relations. A communication

diagram is another kind of interaction diagram and has very similar semantics as a

sequence diagram, its CGs are similar to that of sequence diagram. Both object and

communication diagrams can be accommodated in CRF without introducing addi-

tional primitive concepts and relations in the CGs Support. Use case diagrams depict

the interactions between the system and users. More primitive concept types like
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Use case and Actor and relation types like include and extend need to be added to

expand the current CGs Support.

7.5 The Size of CGs Expressing Semantics of UML Diagrams

We are sure that readers are impressed by the sheer size of the CGs in this work

(look at the number of pages in appendices). The whole point of having the Primitives

in the CGs Support is that a diagram can be expressed in CGs using low-level concepts

and relations de�ned in it. The primitives are to modeling languages (e.g. UML) as

assembly language statements are to high-level programming languages. As a result,

a semantically rich UML diagram takes more time and space to be expressed in

primitives because each model element contains a lot of semantics. For example, a

transition in state diagrams is a simple line with arrow but it turns out to take nearly

one page when its semantics are expressed in CGs. On the other hand, if model

elements in a diagram are close to primitives, the size of its corresponding CGs would

be small.

7.6 Working with a Requirements Acquisition Methodology

We introduced the idea of conceptual feedback in Chapter 1. Two frameworks,

PWF and CRF, can be used to implement this idea (Figure 7.1 shows the CRF).

During conceptual feedback, diagrams in the requirements �ecosystem� have

di�erent degrees of completeness and we can choose one UML diagram to start with

and make it more complete by augmenting it with requirements from all other UML

diagrams in the �ecosystem.� By �lling in the holes and adding additional require-

103



Conceptual 
Graphs

Class 
diagram

State 
diagram

Sequence 
diagram

Use case 
diagram

Communication 
diagram

Figure 7.1: Requirements acquisition methodology in CRF

ments knowledge in this diagram, it becomes more complete than it was. A second

UML diagram in the requirements �ecosystem� then is picked and the same process

is repeated. Sooner or later, all diagrams become more and more complete, and the

growth of the knowledge of the entire requirements in the �ecosystem� becomes slow

because there are not many holes through transformations. A natural question a

reader might ask here is, what is the best order of picking and transforming? Fig-

uring out what is the best order to make this work well is an interesting topic but

it is not our focus. A future work would consider using the CRF in a working envi-

ronment and �gure out how the order of development of the diagrams can a�ect the

e�ectiveness in requirements knowledge acquisition in the requirements �ecosystem.�

7.7 Future work

Future work involves resolving automating the requirements acquisition pro-

cess in PWF and CRF, including more UML diagrams in both frameworks and �gur-
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ing our an e�ective acquisition order for several UML diagrams in the requirements

�ecosystem.�
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CHAPTER 8

CONCLUSION

Determining what is missing in requirements analysis models is normally a

di�cult task, but this is made easier by using model transformations during multiple-

viewed requirements modeling. In this work, we have described a pair-wise frame-

work and developed a CGs-based common representation framework in which UML

diagrams with semantic holes are generated for the purpose of requirements acquisi-

tion. The presence of semantic holes in the generated UML diagrams makes modelers

aware of the need to look for speci�c things and provides an excellent opportunity

for further elicitation of new requirements knowledge. The two knowledge acquisi-

tion frameworks have been successfully used in three case studies and, based on the

results, a comparison according to 6 criteria are conducted.

In conclusion, this work contributes to the software engineering community

and the knowledge engineering community in two ways:

1. We proposed and developed the CGs-based CRF for requirements acquisition

during multiple-viewed modeling to demonstrate that knowledge-based model

transformations can indeed provide e�ective assistance to the critical require-

ments process by acquiring more requirements knowledge.
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2. We provide a set of useful criteria for evaluating frameworks that can address

the requirements acquisition problem in the context of multiple-viewed mod-

eling, so that requirements modelers can make decisions and trade-o�s based

on those criteria when choosing knowledge acquisition frameworks for acquiring

requirements knowledge. Moreover, the criteria in this work serve as a baseline

for future work and more criteria can be included.

107



APPENDICES

108



APPENDIX A

CASE STUDY: THE UNIVERSITY INFORMATION SYSTEM

In this appendix, we work out a case study, the University Information System

(UnivSys.), in both frameworks by following the transformation rules and guidelines

described in Chapter 4 (Pair-wise Framework) and Chapter 5 (Common Represen-

tation Framework). This case study includes the UML diagrams of the UnivSys.

dealing with seminar enrollment service for a university. In this system, seminars can

be created, scheduled, opened, enrolled, and closed; students can enroll in a semi-

nar and drop a seminar if a certain requirement is met. All UML diagrams of this

case study come from Amber's book [29] with minor modi�cations (see Figure A.1,

Figure A.2 and Figure A.3). The comparison data concerning the UnivSys. in Chap-

ter 6 (Comparison of the Two Frameworks) is calculated based on the results in this

appendix.

The structure of this appendix is as follows: Section A.1 presents the results of

generating each UML diagram in the PWF; Section A.2 is about CRF where we �rst

convert UML diagrams to CGs and then present the results of generating each UML

diagram from the CGs Reservoir. Note that, in a section that generates a certain

UML diagram, the assumption we make is that the UML diagram to be generated
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1

1
instructs

0..*0..*
enrolled in

Student
-name
-studentNumber
-GPA
enrollASeminar
getSeminarsTaken

Professor
-name
-emailAddress

Seminar
-name
-capacity
-fees
addStudent
dropStudent

Figure A.1: UnivSys. class diagram

when(seatAvailability = available)

student enrolled 
[seatAvailability = available] 

/ addStudent()

cancelled

scheduled

cancelled

student dropped
[seatAvailability = unavailable]

student dropped
[seatAvailability = available]

/ enrollFromWaitingList()

student enrolled 
[seatAvailability = unavailable]

/ addToWaitingList()

closed

cancelled

cancelled

closed
open

Closed to Enrollment

entry / notifyInstructor()

Full

student enrolled / addToWaitingList(); 
considerSplit()

Open For Enrollment

entry / logSize()ScheduledProposed

Figure A.2: Seminar's state diagram

is currently not available while the other two UML diagrams are already developed

(see Section 3.3 for more details). For example, when generating class diagrams in

either PWF or CRF, we assume that the class diagrams of the system are missing;

state diagrams and sequence diagrams then are used to generate class diagrams from

scratch.

110



sched

calculateFees(seminar, theStudent)

determineFit(seminar)
:StudentFees

sched: StudentSchedule
getSchedule()

theStudent:Student

qualifications()
isEligibleToEnroll(theStudent)

seminar: Seminar:EnrollInSeminar
«controller»

Figure A.3: UnivSys. sequence diagram

The structure of this appendix is identical to Appendix B and Appendix C,

which describe the other two complete case studies from di�erent application domains.

A.1 Pair-wise Framework

In this section, based on the pair-wise transformation rules and guidelines

that are described in Chapter 4, state and sequence diagrams are transformed to

class diagrams in Section A.1.1; class and sequence diagrams are transformed to state

diagrams in Section A.1.2; class and state diagrams are transformed to sequence

diagrams in Section A.1.3.

A.1.1 Generation of Class Diagrams

Transformation rules de�ned in Table 4.1 and Table 4.2 are considered to

generate class diagrams. By applying the rules, the state diagram (Figure A.2) and
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the sequence diagram (Figure A.3) of the UnivSys. are transformed to class diagrams.

The generated class diagram with semantic holes is shown in Figure A.4.

112



? ?
assoc.

?
-seatAvailability: {available, unavailable}

? ?
cancelled_assoc.

ClassCausingCancelledEvent
-

? ?
closed_assoc.

ClassCausingClosedEvent
-

? ?
studentDropped_assoc.

ClassCausingStudentDroppedEvent
-

? ?
studentEnrolled_assoc.

ClassCausingStudentEnrolleddEvent
-

? ?
open_assoc.

ClassCausingOpenEvent
-

? ?
scheduled_assoc.

ClassCausingScheduledEvent
-

?

?

assoc. ?

?

assoc.

?

?
assoc.

? ?
assoc.

? ?
assoc.

StudentFees
-
«from SD»
calculateFees(Seminar, Student)

StudentSchedule
-
«from SD>
determineFit(Seminar)

EnrollInSeminar
-

Student
-
«from SD»
qualifications()
getSchedule()

Seminar
«from SM»
-State{Initial, Proposed, Scheduled, 
OpenForEnrollment, CloseToEnrollment, 
Full, Final}
«from SD»
isEligibleToEnroll(Student)
 
«from SM»
logSize()
addStudent()
addToWaitingList()
considerSplit()
notifyInstructor()
enrollFromWaitingList()
 
«transitions»
InitialToProposed()
ProposedToScheduled()
ProposedToFinal()
ScheduledToFinal()
ScheduledToOpenForEnrollment()
OpenForEnrollmentToOpenForEnrollment()
OpenForEnrollmentToFull()
OpenForEnrollmentToClosedToEnrollment()
OpenForEnrollmentToFinal()
FullToFull();
FullToClosedToEnrollment()
FullToOpenForEnrollment()
ClosedToEnrollmentToFinal()

Figure A.4: UnivSys. generated class diagram in PWF
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A.1.2 Generation of State Diagrams

Transformation rules de�ned in Table 4.3 are considered to generate state

diagrams. By applying the rules, class diagram (Figure A.1) and sequence diagram

(Figure A.3) of the UnivSys. are transformed to state diagrams. The generated

state diagrams with semantic holes are shown in Figure A.5 and Figure A.6. Note

that �ve state machines are generated: they are EnrollInSeminar's state machine;

Seminar's state machine; Student's state machine; StudentSchedule's state machine

and StudentFees's state machine.
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Seminar's generated generated state diagram in PWF

EnrollInSeminar's generated state diagram in PWF

event by return of StudentFees.calculateFees(seminar, theStudent)

EIS4
event by return of StudentSchedule.determineFit(seminar) 

/ StudentFees.calculateFees(seminar, theStudent) EIS3

?
event by return of Student.qualifications()? isEligibleToEnroll(theStudent) 

/ Student.qualifications()? S2S1

returned sched 
/ StudentSchedule.determineFit(seminar)

? 
/ Seminar.isEligibleToEnroll(theStudent)

event by return of Seminar.isEligibleToEnroll(theStudent) 
/ Student.getSchedule()

?

? EIS2EIS1

Figure A.5: UnivSys. generated state diagram in PWF part 1
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StudentFees's generated state diagram in PWF

StudentSchedule's generated state diagram in PWF

Student's generated state diagram in PWF

? calculateFees(seminar, theStudent)
/ calculateFees(seminar, theStudent) ?? SF1

getSchedule() 
/ getSchedule()ST2

? determineFit(seminar)
/ determineFit(seminar) ?? SS1

? qualifications() 
/ qualifications() ?? ST1

Figure A.6: UnivSys. generated state diagram in PWF part 2
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A.1.3 Generation of Sequence Diagrams

Transformation strategies de�ned in Section 4.6 are considered to generate

sequence diagrams. By following the transformation guidelines, the state diagram

(Figure A.2) of the UnivSys. is transformed to a set of sequence diagrams. The gen-

erated sequence diagrams with semantic holes are shown in Figure A.7 to Figure A.11.

: ?

: ?

: ?

: ?

: ?

: ?

: ?

ref

State Scheduled
 
 
 
 
 
 
 

ref

ClosedToEnrollment
 
 
 
 
 
 
 

ref

OpenForEnrollment && Full 2
 
 
 
 
 
 
 

ref

State Scheduled
 
 
 
 
 
 
 

OpenForEnrollment && Full

Scheduled

Proposed

sd seq2

Cancelled

Open

Scheduled

seminar: Seminar

ClosedToEnrollment

OpenForEnrollment && Full

Scheduled

Proposed

ref

OpenForEnrollment && Full 1
 
 
 
 
 
 
 

sd seq1

Cancelled

Closed

Open

Scheduled

seminar: Seminar

Figure A.7: UnivSys. generated sequence diagrams in PWF part 1

Figure A.7 and Figure A.8 show the four �rst-level sequence diagrams which

represent the four main state transition paths that collectively cover all transitions

in a state diagram. The set of generated sequence diagrams from a state diagram

possesses the following �ve properties:
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: ?

: ?

: ?

ref

State Scheduled
 
 
 
 
 
 
 

Proposed

sd seq4

Cancelled

seminar: Seminar

Scheduled

Proposed

sd seq3

Cancelled

Scheduled

seminar: Seminar

Figure A.8: UnivSys. generated sequence diagrams in PWF part 2

1. Each sequence diagram in the set starts with the initial state (the object is

created) and ends in a �nal state (the object is destroyed);

2. Every state transition in the state diagram is covered at least once in the set of

generated sequence diagrams;

3. The number of sequence diagrams is minimal given that property 2 is satis�ed;

4. Each sequence diagram in the set has only one lifeline which represents the

object owning the state diagram;

5. There are knowledge acquisition opportunities so the modeler is given a chance

to �ll in the missing requirements.

Figure A.9, Figure A.10 and Figure A.11 de�ne separate sequences which are

referenced by the �rst-level sequence diagrams through the ref fragments (interaction

uses).
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OpenForEnrollment

: ?

: ?

ref

State OpenForEnrollment
 
 
 
 
 
 
 

ref

State Full
 
 
 
 
 
 
 

ref

State Full
 
 
 
 
 
 
 

ref

State OpenForEnrollment
 
 
 
 
 
 
 

OpenForEnrollment

alt

[seatAvailability = unavailable]
 
 
 

 
[seatAvailability = available]

 
 
 
 

loop

[seatAvailability = unavailable]
 
 
 
 
 
 
 

loop

[seatAvailability = available]
 
 
 
 
 
 
 

enrollFromWaitingList()

addStudent()

Student enrolled

Student dropped

ref

State OpenForEnrollment
 
 
 
 
 
 
 

sd OpenForEnrollment && Full 1      

seminar: Seminar

addToWaitingList();

Student enrolled

Figure A.9: UnivSys. generated sequence diagram in PWF part 3
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OpenForEnrollment

: ?

: ?

: ?

Full

ref

State Full
 
 
 
 
 
 
 

addToWaitingList();

Student enrolled

ref

State OpenForEnrollment
 
 
 
 
 
 
 

ref

State Full
 
 
 
 
 
 
 

ref

State Full
 
 
 
 
 
 
 

ref

State OpenForEnrollment
 
 
 
 
 
 
 

OpenForEnrollment

alt

[seatAvailability = unavailable]
 
 
 

 
[seatAvailability = unavailable]

 
 
 
 

loop

[seatAvailability = unavailable]
 
 
 
 
 
 
 

loop

[seatAvailability = available]
 
 
 
 
 
 
 

enrollFromWaitingList()

addStudent()

Student enrolled

Student dropped

ref

State OpenForEnrollment
 
 
 
 
 
 
 

sd OpenForEnrollment && Full 2      
seminar: Seminar

addToWaitingList();

Student enrolled

Figure A.10: UnivSys. generated sequence diagram in PWF part 4
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: ? Full
OpenForEnrollment

seminar: Seminar

notifyInstructor()

sd ClosedToEnrollment    

addToWaitingList()

Student enrolled

sd Full

seminar: Seminar

sd OpenForEnrollment    

seminar: Seminar

logSize()

Figure A.11: UnivSys. generated sequence diagrams in PWF part 5

A.2 Common Representation Framework

In this section, we adopt a di�erent requirements acquisition framework, the

CRF, to generate UML diagrams with semantic holes for the University Information

System. As detailed in Chapter 5, in order to generate the target UML diagram

(e.g. state diagram), all the other UML diagrams (e.g. class and sequence diagrams)

must �rst be converted to CGs and stored in the CGs Reservoir; inference rules of the

target UML diagram are then applied to the CGs Reservoir to assert the requirements

knowledge necessary to build the target UML diagram.

The results of converting class diagrams, state diagrams, and sequence dia-

grams of UnivSys. to CGs are shown in Section A.2.1; in Section A.1.2, each UML

diagram is generated by applying corresponding inference rules to the CGs Reservoir

which contains the requirements of the other two diagrams expressed in CGs form.
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A.2.1 Converting UML Diagrams to CGs

Three UML diagrams of the UnivSys. (Figure A.1, Figure A.2 and Figure A.3)

are converted to CGs based on the canonical graphs de�ned in Chapter 5. Note that

the following colors are used in CGs to indicate the source of requirements knowledge:

CGs in orange represent knowledge from class diagram; CGs colored green represent

knowledge from state diagram; CGs colored cyan represent knowledge from sequence

diagram.

A.2.1.1 Converting Class Diagrams to CGs

The canonical graphs for class diagrams are de�ned in Figure 5.1. By instan-

tiating the canonical graphs, the class diagram of UnivSys. (Figure A.1) is converted

to CGs (Figure A.12).

A.2.1.2 Converting State Diagrams to CGs

State transitions are organized in a state transition tree when a state diagram

is converted to CGs (Figure A.13). Each concept represents a state transition and is

further elaborated in a CG context in the following �gures. Transitions are related

by after.

The canonical graph for each state transition is de�ned in Figure 5.4. By

instantiating the canonical graph for each of the 14 transitions in the state diagram

of UnivSys. (Figure A.2), the CGs representing those state transitions are shown

in Figure A.14 to Figure A.20. Note that each �gure only shows CGs for two state

transitions because of the size of each CG.
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Figure A.12: UnivSys. class diagram in CGs

Figure A.13: UnivSys. state diagram in CGs
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Figure A.14: UnivSys. state diagram in CGs part 1
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Figure A.15: UnivSys. state diagram in CGs part 2
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Figure A.16: UnivSys. state diagram in CGs part 3
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Figure A.17: UnivSys. state diagram in CGs part 4
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Figure A.18: UnivSys. state diagram in CGs part 5
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Figure A.19: UnivSys. state diagram in CGs part 6
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Figure A.20: UnivSys. state diagram in CGs part 7
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A.2.1.3 Converting Sequence Diagrams to CGs

Sequence diagrams are made up of messages passing among objects. The

canonical graph for a message passing is de�ned in Figure 5.10. By instantiating

the canonical graphs, the sequence diagram of UnivSys. (Figure A.3) is converted to

CGs. Because of the large size of the CG model of sequence diagram, it is divided

into two CGs and presented in Figure A.21 and Figure A.22, respectively.
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Figure A.21: UnivSys. sequence diagram in CGs part 1
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Figure A.22: UnivSys. sequence diagram in CGs part 2
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A.2.2 Generating UML Diagrams with Semantic Holes from the CGs

Reservoir

With the UML diagrams being expressed in CGs form in the previous section,

in this section requirements knowledge needed to build target UML diagrams for

UnivSys. is inferred according to the inference rules. Note that CGs in light gray

represent requirements knowledge inferred by inference rules.

A.2.2.1 Generating Class Diagrams from the CGs Reservoir

In this subsection, the class diagram is the target UML diagram to be built

and the state diagram and sequence diagram of UnivSys. have already been con-

verted to CGs and stored in CGs Reservoir (see their CGs in Section A.2.1.2 and

Section A.2.1.3). The inference rules for generating class models are de�ned in Fig-

ure 5.15 and Figure 5.16 in Chapter 5. Eleven classes are inferred. The results of the

generated CGs are shown in Figure A.23 to Figure A.25.

Then the CGs are translated back to the UML class diagram notations (Fig-

ure A.26).
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Figure A.23: UnivSys. generated class model in CGs part 1
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Figure A.24: UnivSys. generated class model in CGs part 2
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Figure A.25: UnivSys. generated class model in CGs part 3
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??
assoc.

Object?
-SeatAvailability: {available, unavailable}
?

?

?

assoc. ?

?

assoc.

StudentFee
-?
«operations from SD»
calculateFee()
 
«issue operation»
issueReplyMessage()
 
«receive operation»
receiveCallMessage()

StudentSchedule
-?
«operations from SD»
determineFit()
 
«issue operation»
issueReplyMessage()
 
«receive operation»
receiveCallMessage()

?

?association

??
StudentDropped_assoc.

StudentDroppedMSGSender?
-?
?

? ?
Closed_assoc.ation

ClosedMSGSender?
-?
?

??
assoc.

??
StudentEnrolled_assoc.

??
Cancelled_assoc.

??
Scheduled_assoc.

??
Open_assoc.

OpenMSGSender?
-?
?

EnrollInSeminar
-?
«issue operation»
issueCallMessage()
 
«receive operation»
receiveReplyMessage() StudentEnrolledMSGSender?

-?
?

ScheduledMSGSender?
-?
?

CancelledMSGSender?
-?
?

Student
-?
«operations from SD»
qualification()
getSchedule()
 
«issue operation»
issueReplyMessage()
 
«receive operation»
receiveCallMessage()

??
assoc.

Seminar
-State_ProposedDefAttr?
-State_ScheduledDefAttr?
-State_OpenForEnrollmentDefAttr?
-State_FullDefAttr?
-State_ClosedToEnrollmentDefAttr?
«operations from SM»
doActivity_Initial
exitActivity_Initial
effect_InitialToProposed
entryActivity_Proposed
doActivity_Proposed
exitActivity_Proposed
effect_ProposedToScheduled
entryActivity_Scheduled
doActivity_Scheduled
effect_ProposedToFinal
entryActivity_Final
doActivity_Final
exitActivity_Scheduled
effect_ScheduledToOpenForEnrollment
logSize
doActivity_OpenForEnrollment
entryActivity_Scheduled
effect_ScheduledToFinal
exitActivity_OpenForEnrollment
addStudent
effect_OpenForEnrollmentToFinal
addToWaitingList
entryActivity_Full
doActivity_Full
effect_OpenForEnrollmentToClosedToEnrollment
notifyInstructor
doActivity_ClosedToEnrollment
exitActivity_Full
effect_FullToFull1
enrollFromWaitingList
effect_FullToClosedToEnrollment
effect_FullToOpenForEnrollment
exitActivity_ClosedToEnrollment
effect_ClosedToEnrollmentToFinal
 
«issue operation»
issueCallMessage()
issueReplyMessage()
 
«receive operation»
receiveMessage()
receiveCallMessage()
receiveReplyMessage()
 
«operations from SD»
isEligibleToEnroll()

Figure A.26: UnivSys. generated class diagram in CRF
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A.2.2.2 Generating State Diagrams from the CGs Reservoir

In this subsection, state diagram is the target UML diagram to be built and the

class diagram and sequence diagram of UnivSys. have already been converted to CGs

and stored in CGs Reservoir (see their CGs in Section A.2.1.1 and Section A.2.1.3).

The inference rules for generating state diagrams are de�ned in Section 5.2.2.1. After

the rules are applied on the CGs Reservoir, the CGs for state diagrams are generated.

Because of the size of the CGs, they are shown in two separate �gures, Figure A.27

and Figure A.28.
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Figure A.27: UnivSys. generated state model in CGs part 1
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Figure A.28: UnivSys. generated state model in CGs part 2
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The CGs are then translated back to the UML state diagram notations (Fig-

ure A.29 to Figure A.33). Note that �ve state machines are generated.

?
[condition?] / effect?

?

entry / ?
do / activity?
exit / ?

Seminar State S2 definition:
{
Attr: ?
}

Seminar State S1 definition:
{
Attr: ?
}

event by return of theStudent.qualification()
[condition?] / effect?

?

entry / ?
do / activity?
exit / ?

isEligibleToEnroll(theStudent) 
[condition?] / isEligibleToEnroll(theStudent), 

theStudent.qualification()

S2

entry / ?
do / activity?
exit / ?

S1

entry / ?
do / activity?
exit / ?

Figure A.29: UnivSys. generated state diagram for Seminar in CRF

Student State Stu2 definition:
{
Attr: ?
}

Student State Stu1 definition:
{
Attr: ?
}

getSchedule() 
[condition?] / getSchedule()

?
[condition?] / effect?

qualification() 
[condition?] / qualification()

?

entry / ?
do / activity?
exit / ?

?

entry / ?
do / activity?
exit / ?

Stu2

entry / ?
do / activity?
exit / ?

Stu1

entry / ?
do / activity?
exit / ?

Figure A.30: UnivSys. generated state diagram for Student in CRF
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EnrollInSeminar State ES4 definition:
{
Attr: ?
}

EnrollInSeminar State ES1 definition:
{
Attr: ?
}

event by return 
of calculateFee(seminar, theStudent)

[condition?] / effect?

?
[condition?] / effect?

?

entry / ?
do / activity?
exit / ?

?

entry / ?
do / activity?
exit / ?

event by return of isEligibleToEnroll(theStudent)
[condition?] / theStudent.getSchedule()

ES1

entry / ?
do / activity?
exit / ?

EnrollInSeminar State ES3 definition:
{
Attr: ?
}

EnrollInSeminar State ES2 definition:
{
Attr: ?
}

event by return of determineFit(seminar)
[condition?] / 

StudentFee.calculateFee(seminar, theStudent)

ES4

entry / ?
do / activity?
exit / ?

event by return of getSchedule()
[condition?] / sched.determineFit(seminar)

ES3

entry / ?
do / activity?
exit / ?

ES2

entry / ?
do / activity?
exit / ?

Figure A.31: UnivSys. generated state diagram for EnrollInSeminar in CRF

StudentSchedule State Sch1 definition:
{
Attr: ?
}

?
[condition?] / effect?

determineFit(seminar) 
[condition?] / determineFit(seminar)

?

entry / ?
do / activity?
exit / ?

?

entry / ?
do / activity?
exit / ?

Sch1

entry / ?
do / activity?
exit / ?

Figure A.32: UnivSys. generated state diagram for StudentSchedule in CRF

StudentFee State SF1 definition:
{
Attr: ?
}

?
[condition?] / effect?

calculateFee(seminar, theStudent) 
[condition?] / calculateFee(seminar, theStudent)

?

entry / ?
do / activity?
exit / ?

?

entry / ?
do / activity?
exit / ?

SF1

entry / ?
do / activity?
exit / ?

Figure A.33: UnivSys. generated state diagram for StudentFee in CRF
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A.2.2.3 Generating Sequence Diagrams from the CGs Reservoir

In this subsection, a sequence diagram is the target UML diagram to be built

and the class diagram and state diagram of UnivSys. have already been converted

to CGs and stored in CGs Reservoir (see their CGs in Section A.2.1.1 and Sec-

tion A.2.1.2). The inference rules for generating sequence diagrams are de�ned in

Section 5.2.3.1. After the rules are applied on the CGs Reservoir, the CGs for se-

quence diagrams are generated. In this case study, nine sequences are identi�ed in

CGs and they are shown in nine separate �gures, Figure A.34 to Figure A.42. Each

of the sequences will result in one sequence diagram when CGs are translated back

to sequence diagram notations.
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Figure A.34: UnivSys. generated sequence 1 in CGs
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Figure A.35: UnivSys. generated sequence 2 in CGs
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Figure A.36: UnivSys. generated sequence 3 in CGs
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Figure A.37: UnivSys. generated sequence 4 in CGs
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Figure A.38: UnivSys. generated sequence 5 in CGs
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Figure A.39: UnivSys. generated sequence 6 in CGs
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Figure A.40: UnivSys. generated sequence 7 in CGs
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Figure A.41: UnivSys. generated sequence 8 in CGs
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Figure A.42: UnivSys. generated sequence 9 in CGs

Then the nine sequences in CGs (Figure A.34 to Figure A.42) are translated

back to the UML sequence diagram notations (Figure A.43 to Figure A.45). Note

nine sequence diagrams are generated based on the nine sequences identi�ed in the

CGs Reservoir.
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Figure A.43: UnivSys. generated sequence diagrams in CRF part 1
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Figure A.44: UnivSys. generated sequence diagrams in CRF part 2
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Figure A.45: UnivSys. generated sequence diagrams in CRF part 3
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