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A B S T R A C T   

Respiratory syncytial virus can cause severe illness and even death, particularly in infants. The increased severity 
of disease in young children is thought to be due to a lack of previous exposure to the virus as well as the limited 
immune response in infants. While studies have examined the clinical differences in disease between infants and 
adults, there has been limited examination of how the viral dynamics differ as infants develop. In this study, we 
apply a mathematical model to data from cotton rats and ferrets of different ages to assess how viral kinetics 
parameters change as the animals age. We find no clear trend in the viral decay rate, infecting time, and basic 
reproduction number as the animals age. We discuss possible reasons for the null result including the limited 
data, lack of detail of the mathematical model, and the limitations of animal models.   

1. Introduction 

Respiratory syncytial virus (RSV) causes an acute respiratory illness 
that can be particularly severe in infants and young children (Anderson 
et al., 2016; Borchers et al., 2013; Stein et al., 2017). Clinically, young 
children experience higher mortality and hospitalization rates (Ander-
son et al., 2016; Borchers et al., 2013; Stein et al., 2017). They experi-
ence more severe symptoms and are more likely to have infections 
spread to the lower respiratory tract (Kabego et al., 2018; Shi et al., 
2015; Ueno et al., 2019; Zar et al., 2020). They are also more likely to 
have long-lasting health consequences such as wheezing and asthma 
(Backman et al., 2014; Baraldi et al., 2020; Coutts et al., 2020; Fauroux 
et al., 2017) after infection with RSV. Healthy adults, on the other hand, 
experience only mild illness (Bagga et al., 2013; Hall et al., 2001; Lee 
et al., 2004; Mills et al., 1971). An understanding of how the dynamics of 
the infection change as humans age can help us develop better treatment 
strategies for the vulnerable infant population. 

Some of the change in RSV infection dynamics between children and 
adults is thought to be due to differences in the immune response (Chung 
et al., 2007; Drajac et al., 2017; Lambert et al., 2014; Mcintosh et al., 
1978). Until about 6 months of age, infants are protected by maternal 
antibodies (Chu et al., 2014; Walsh et al., 2018) and the innate immune 
response (Piedra et al., 2017). There is even some evidence that in early 
childhood some cells actively suppress the immune response (Elahi 
et al., 2013). At about 4 months of age, the adaptive immune response 
starts to develop (Sande et al., 2014; Trento et al., 2017). This devel-
oping immune system results in markedly different immune responses to 

RSV in children and infants as compared to healthy adults. Studies have 
shown that there is a delay in the pulmonary cytokine response 
(Boukhvalova et al., 2007), an attenuated IFN I response (Marr et al., 
2014), and an imbalance of chemokines (Boukhvalova et al., 2007; 
Eichinger et al., 2017; Shrestha et al., 2017) in young children as 
compared to adults. Cytotoxic T cells are also known to be functionally 
different in children than in adults (Mold et al., 2010). While some de-
tails of the pediatric immune response are known, teasing out their ef-
fect on the viral time course of RSV is difficult. 

One technique for quantifying the basic biological processes under-
lying the viral time course is mathematical modeling. Mathematical 
models of the in-host dynamics of viral infections have been used to 
quantitatively describe the infection process for many different viral 
infections (Baccam et al., 2006; González-Parra et al., 2018; 
Hernandez-Vargas and Velasco-Hernandez, 2020; Liao et al., 2020), 
including RSV (Beauchemin et al., 2019; González-Parra et al., 2018a; 
González-Parra and Dobrovolny, 2015; 2018b; Wethington et al., 2019). 
The ability of mathematical models to quantify the timescale of infection 
processes has been exploited to quantitatively compare infections 
caused by different strains of virus (Paradis et al., 2015; Petrie et al., 
2015; Pinilla et al., 2012; Simon et al., 2016), infections caused by 
different viruses (González-Parra et al., 2018a), or infections in different 
systems (González-Parra and Dobrovolny, 2018b). These types of studies 
have pinpointed which steps in the viral replication cycle differ between 
the infections being compared, and have quantified the change. This 
type of study was recently performed using some of the data used in this 
study (Wethington et al., 2019), finding age-dependent differences in 
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the initial viral concentration, the ratio of decay time to production 
time, and the onset of the immune response. 

Building on this effort, we use a viral kinetics model to quantitatively 
compare RSV infections in young and adult animals. We use the data 
from studies of cotton rats (Prince et al., 1978) that was used in the 
Wethington et al. study (Wethington et al., 2019), but include mea-
surements from all three regions of the respiratory tract (nose, trachea, 
and lung). We also include analysis of data from a second experiment 
using ferrets (Prince and Porter, 1976) of different ages to estimate the 
parameters of a mathematical model of RSV infection and determine if 
they change as the animals age. 

2. Material and methods 

2.1. Viral kinetics model 

We use a simple model describing the viral replication cycle first 
used to describe influenza (Baccam et al., 2006), but more recently also 
used to describe respiratory syncytial virus dynamics in African green 
monkeys (González-Parra and Dobrovolny, 2018a). 

Ṫ = − βTV
Ė = βTV − kE
İ = kE − δI

V̇ = pI − cV

(1)  

In this model, uninfected target cells, T, are infected by the virions, V, at 
rate β. The infected cells transition into an eclipse phase, E, where they 
are not yet producing virus. The eclipse cells transition to infectious 
cells, I, at rate k with infectious cells dying at rate δ. Virus is actively 
produced by the infectious cells at rate p and virus is cleared at rate c. 

Since some of the parameters depend on units of virus, which are not 
standardized and thus not easily compared from one experiment to 
another, we use the parameter estimates to derive quantities that more 
readily quantify different processes during the course of the infection. 
The viral decay rate is the minimum of c, k, and δ (Smith et al., 2010) and 
gives a measure of how quickly virus is being eliminated once there are 
few target cells remaining. The basic reproduction number (R0 = βpT0 
/cδ), where T0 is the initial number of target cells, is the number of 
secondary infections resulting from a single infected cell and gives a 
measure of the ease or difficulty of virus spread between cells. The 
infecting time (tinf =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2/pβT0

√
) is the time between the release of a 

virion from one cell and infection of the next cell. Note that this model 
does not include an explicit immune response, but changes in the 
infection caused by the immune response can be captured by changes in 
the parameter values (González-Parra and Dobrovolny, 2018b). For 
example, we expect the viral decay rate to be higher in animals where 
the antibody response has developed and is helping to clear virus from 
the respiratory tract. 

2.2. Experimental data 

Viral titers were obtained from two previous studies (Prince et al., 
1978; Prince and Porter, 1976) that examined aging in cotton rats and 
ferrets. In the first data set, cotton rats (Sigmodon hispidus) of ages 3, 14, 
28, or 40 days were infected intranasally with 104 pfu of long strain RSV. 
Virus titer was measured over a period of 20 days in the lungs, trachea, 
and nose. 3 animals were sacrificed at each time point, so the data does 
not represent the viral time course for an individual animal, but is the 
geometric mean of viral load measured in different sets of animals at 
each time point. Since the raw experimental data after day 9 usually fell 
below the level of detection, the compiled data sets do not extend 
beyond day 9. 

In the second data set, ferrets of ages 0, 3, 7, 14, or 28 days were 
infected intranasally with 3.6×103 pfu of the long strain of RSV. Virus 
was measured from lung and nasal tissue homogenates daily until 10 

days post-infection (dpi). Two separate litters of ferrets were used and 
data was presented separately for each group. At each time point, one 
animal from each of the litters was sacrificed, so this data also does not 
represent the viral time course in an individual animal. Data was 
extracted from figures in both papers using WebPlotDigitizer (https:// 
automeris.io/WebPlotDigitizer/). 

2.3. Fitting algorithms 

To determine the best fit, the sum of squared residuals (SSR) between 
the experimental and predicted values was minimized. The SSR is 
calculated as 

SSR =
∑n

i=1
(log10(yi) − log10(f (ti)))

2
, (2)  

where n is the number of experimental data points, yi are the experi-
mentally measured viral loads, and f(ti) are the model predictions of 
viral load (V) at time ti. All data points are weighted equally. To fit the 
model to the experimental data, the viral kinetic model was solved using 
Python’s odeint function. The SSR was minimized using the Nelder 
Mead algorithm of Python’s minimize function. We assumed that in-
fections were started with an initial viral inoculum (determined through 
fitting) and we set the initial number of target cells to 1 (T0 = 1, i.e. we 
measured cells relative to the initial number present). We assumed that 
there are initially no eclipse or infectious cells (E0 = I0 = 0). 

We used the Monte Carlo Markov Chain (MCMC) technique to esti-
mate the 95% confidence intervals of our best fit parameters. This was 
implemented using python’s emcee package using 50 walkers initialized 
in a hypersphere about the best fit estimate. The assumed prior distri-
butions for each parameter were uniform distributions encompassing a 
broad range of possible values: (10− 8–10− 2g⋅(pfu⋅d)− 1) for β, 
(104–1010pfu⋅(g⋅d)− 1) for p, (10− 3–100/d) for c, k, and δ, and 
(10− 3–105pfu /g) for V0. The algorithm was run for 1000 steps after a 
burn-in of 100 steps. 

3. Results 

3.1. Aging in cotton rats 

Fits of the viral kinetics model to RSV infection in cotton rats are 
shown in Fig. 1 with associated parameter values given in Table 1. 
Correlation and parameter distribution plots are included in the sup-
plementary material. Note that we have fit the viral kinetics model 
separately to the viral titer measurements in the lung (left column), 
trachea (center column), and nose (right column). Some of these pa-
rameters have been estimated for RSV in vitro (Beauchemin et al., 2019; 
González-Parra et al., 2018a; González-Parra and Dobrovolny, 2018b), 
in other animals (González-Parra and Dobrovolny, 2018a; 2018b), and 
in humans (González-Parra and Dobrovolny, 2015; 2018b). Our esti-
mates for the infecting time are lower than estimates of in vitro in-
fections (Beauchemin et al., 2019), but in line with estimated infecting 
times for in vivo infections (González-Parra and Dobrovolny, 2015; 
2018b). The basic reproduction number found here is also in line with 
previous estimates for RSV infections (Beauchemin et al., 2019; 
González-Parra and Dobrovolny, 2018a). 

For easier interpretation of any changes in parameter values as the 
rats age, we plot the posterior distributions determined from MCMC for 
viral decay rate, basic reproduction number, and infecting time as 
functions of age in Fig. 2. We see no clear trend in any of the parameters 
as the rats age. The distributions for all three parameters overlap for all 
ages, indicating that there is no statistically discernible age-dependent 
difference in parameters. There are some slight changes in the param-
eter distributions when comparing distributions for nose, trachea, and 
lungs. The distribution for the decay rate in the lungs has a larger tail on 
the right as compared to the distributions for nose and trachea. 
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Similarly, the distribution for R0 in the nose has the longest tail on the 
right while the distribution for tinf in the trachea has the longest tail. 

3.2. Aging in ferrets 

We performed a similar analysis using data taken from aging ferrets. 
In this case, the viral load measurements are taken from nasal tissues 
only, but from two different litters of ferrets. Model fits to the experi-
mental data are shown in Fig. 3 with corresponding parameters given in 
Table 2. Correlation plots and parameter distributions for the estimated 
parameters are included in the supplemental materials. In many of the 
fits to the ferret data, we see a correlation between the parameters β and 
p, but no clear correlation between other parameters. Infecting times are 
similar to those found in the cotton rats, although the basic reproduction 
number is somewhat higher in some cases. 

Again, we plot the posterior distributions of viral decay rate, 
infecting time, and basic reproduction numbers for different ages of 
ferrets (Fig. 4). While it is possible to more clearly differentiate some of 
the distributions by eye for the ferrets than it is for the cotton rats, there 
is still substantial overlap of the distributions, indicating no significant 
difference in the parameters as the ferrets age. 

4. Discussion 

This study used mathematical models to quantify the effect of aging 

on several parameters that characterize RSV infection. Specifically, we 
compared the viral decay rate, basic reproduction number, and infecting 
time by fitting a mathematical model to viral titer measurements from 
RSV infections. We did not find a clear trend in any of those three pa-
rameters as a function of the age of the animal in either cotton rats or 
ferrets. While we did not find a trend in the parameters we examined, a 
recent study of age-related differences in RSV infections in cotton rats 
noted an increased viral titer peak and lower levels of interferon in 
young rats (Wen et al., 2019) as compared to adult rats. Unfortunately, 
this study used only three cohorts of rats (young, adult, elderly), making 
it difficult to clearly identify age-related trends. 

Our study involves young animals whose immune response is 
developing, so we might expect that parameters reflecting the influence 
of the immune response would change systematically with age. In this 
study, the immune response is primarily reflected in the viral decay rate, 
which is affected by the presence of antibodies and the presence of 
cytotoxic T lymphocytes (CTLs). As the immune response increases, we 
expect the viral decay rate to increase — when antibodies (or CTLs) are 
present, virus (or infectious cells) are cleared from the body faster and 
will therefore lead to more rapid clearance of the virus (Cao et al., 2016; 
Dobrovolny et al., 2013). We do not observe such a clear trend. There 
are also reports of more severe infections with higher viral loads in 
pediatric patients (Anderson et al., 2016; Borchers et al., 2013; Stein 
et al., 2017; Uusitupa et al., 2020; Zhou et al., 2015). Higher viral loads 
will be reflected in the basic reproductive number, so we expect that this 

Fig. 1. Experimental data (black dots) is plotted with the viral model predictions (solid lines). Data represents RSV infections in different aged (rows) cotton rats with 
viral titer measurements taken from the lung (left column), trachea (center column), and nose (right column). 
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parameter should decrease with age, but we do not observe this trend in 
our study either. There is, however, contradictory evidence on this 
point, with other recent studies showing increased severity with lower 
viral loads in infants (Brenes-Chacon et al., 2021; Garcia-Maurino et al., 
2019), so the expected trend in basic reproduction number with age is 
not clear-cut. 

There are several possible reasons for the null findings of this study. 
It could be that the particular parameters we examined here do not 
change significantly with age, but that other parameters might show a 
clearer age-based trend. For example, a study using human RSV infec-

tion data found lower eclipse phase duration (1/k) and lower infectious 
lifespan (1/δ) in pediatric patients as compared to healthy adults 
(González-Parra and Dobrovolny, 2018b). Another study that analyzed 
the cotton rat data used here found an abrupt change in the ratio of 
decay time to production time, denoted by τratio, between the ages of 14 
days and 28 days in the lung data (Wethington et al., 2019). The 
calculation of τratio is based on linear fits to the rise and fall of viral load, 
so there is less of an issue with parameter identifiability. Wethington 
et al. also fit a mechanistic model that included a crude adaptive im-
mune response to the lung data of cotton rats, finding that the initial 

Table 1 
Best fit parameter estimates for cotton rats of different ages.  

Parameter 3 days 14 days 28 days 40 days Prior 

Lungs 
β (g⋅(pfu⋅d)− 1

) 3.90× 10− 7  2.78× 10− 6  1.62× 10− 6  2.54× 10− 6  10− 8–10− 2  

95% CI (0.371–69100)× 10− 7  (0.718–4230)× 10− 6  (0.0373–8380)× 10− 6  (0.0147–7540)× 10− 6   

k (/d)  8.48 4.24 10.94 6.03 10− 3–102  

95% CI 0.0302–84.9 0.00277–81.4 0.00158–80.7 0.00152–80.4  
δ (/d)  8.48 4.73 10.94 6.62 10− 3–102  

95% CI 0.0132–84.8 0.0546–90.2 0.0191–91.0 0.00282–78.2  
p (pfu⋅(g⋅d)− 1

) 3.53× 108  3.11× 107  1.26× 108  6.86× 107  104–1010  

95% CI (0.000338–69.7)× 108  (0.00227–249)× 107  (0.000163–13.1)× 108  (0.00124–269)× 107   

c (/d)  8.49 6.22 10.92 14.09 10− 3–102  

95% CI 0.00293–79.1 0.00427–76.1 0.00350–72.7 0.00157–84.1  
V0 (pfu/g)  1.44× 104  6.50× 103  2.16× 103  6.50× 103  10− 3–105  

95% CI 0.0132–9.21× 104  0.00423–7.82× 104  0.00438–8.67× 104  0.0101–8.76× 104   

R0  1.90 3.27 1.70 2.05  
95% CI 6.90× 10− 3–3.59× 104  0.919–2.57× 104  0.0416–6.27× 104  0.121–1.65× 105   

tinf (h)  2.85 3.66 2.38 2.57  
95% CI 0.732–102 0.0298–72.7 0.0461–454 0.0414–487  

Trachea 
β (g⋅(pfu⋅d)− 1

) 1.19× 10− 6  1.10× 10− 5  1.17× 10− 5  1.55× 10− 5  10− 8–10− 2  

95% CI (0.0121–6550)× 10− 6  (0.00126–748)× 10− 5  (0.00128–763)× 10− 5  (0.00147–769)× 10− 5   

k (/d)  17.9 15.1 8.80 10.9 10− 3–102  

95% CI 0.00137–81.2 0.00140–71.6 0.00141–77.6 0.00135–77.3  
δ (/d)  54.6 26.8 8.81 11.3 10− 3–102  

95% CI 0.00240–90.4 0.00271–85.5 0.00242–83.1 0.00203–79.7  
p (pfu⋅(g⋅d)− 1

) 9.61× 108  3.94× 107  1.07× 107  1.15× 107  104–1010  

95% CI (0.000119–27.6)× 108  (0.00123–46.5)× 107  (0.00113–46.0)× 107  (0.00118–18.4)× 107   

c (/d)  18.4 12.5 8.84 11.3 10− 3–102  

95% CI 0.00130–59.4 0.00130–71.1 0.00143–61.1 0.00131–67.5  
V0 (pfu/g)  1.60× 104  6.52× 102  1.60× 103  1.25× 103  10− 3–105  

95% CI 5.33–9.06× 104  3.74–6.67× 104  4.76–8.14× 104  0.0387–7.31× 104   

R0  1.13 1.30 1.60 1.40  
95% CI 0.00936–2.60× 104  0.00578–3.78× 104  0.00737–4.84× 104  0.0162–7.56× 104   

tinf (h)  1.00 1.63 3.04 2.55  
95% CI 0.149–854 0.150–1030 0.118–1240 0.131–910  

Nose 
β (g⋅(pfu⋅d)− 1

) 1.46× 10− 6  2.14× 10− 6  3.76× 10− 6  1.16× 10− 5  10− 8–10− 2  

95% CI (0.532–5400)× 10− 6  (0.0188–8230)× 10− 6  (0.0227–7620)× 10− 6  (0.00315–756)× 10− 5   

k (/d)  2.71 5.17 6.17 22.4 10− 3–102  

95% CI 0.00194–68.9 0.00161–82.2 0.00199–68.6 0.00194–78.6  
δ (/d)  34.0 4.62 6.12 10.0 10− 3–102  

95% CI 0.00330–83.9 0.00188–82.5 0.00170–80.4 0.00157–82.7  
p (pfu⋅(g⋅d)− 1

) 3.18× 108  2.03× 107  2.11× 107  6.46× 106  104–1010  

95% CI (0.000728–35.1)× 108  (0.00178–395)× 107  (0.00155–131)× 107  (0.0202–1140)× 106   

c (/d)  2.65 4.20 6.12 10.0 10− 3–102  

95% CI 0.00197–59.3 0.00164–85.8 0.00165–78.0 0.00130–43.7  
V0 (pfu/g)  1.53× 102  1.16× 104  1.18× 103  2.81× 101  10− 3–105  

95% CI 0.00203–4.72× 104  0.00366–9.18× 104  0.0108–7.64× 104  0.00311–6.92× 104   

R0  5.16 2.24 2.17 9.71  
95% CI 4.05–1.90× 106  0.111–1.08× 106  0.151–3.66× 105  1.10–6.17× 106   

tinf (h)  1.57 5.15 3.80 3.92  
95% CI 0.0392–12.8 0.0134–337 0.0927–407 0.0576–186   
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viral inoculum decreased with age and the time at which the immune 
response started increased slightly with age. The authors attributed the 
decrease in viral inoculum to the expanding size of the lung. The cor-
relation of onset of immune response with age was not strong and the 
magnitude of the change was less than a day. Although they used a 
different fitting methodology (nonlinear mixed effects modeling), they 
also found no significant age-dependence in the remaining parameters 
of their model. 

In humans, there is also the confounding effect of previous infection, 
since 100% of people have had the infection by age two (Toivonen et al., 
2020). Previous exposure to RSV results in an immune response that is 

primed to fight RSV re-infection (Blunck et al. (2021)), although the 
presence of antibodies wanes over time allowing for re-infection (Varga 
and Braciale, 2013). There is also evidence that RSV does not produce a 
robust T-cell response (Vojvoda et al., 2014), which might also 
contribute to its ability to reinfect with attenuated severity over a per-
son’s lifetime. Since the animals in these studies were housed in labs 
where exposure to infection could be controlled, they were presumably 
all immunologically naive to RSV. This means that any changes in dy-
namics observed in these studies are due only to age-related changes in 
immune response, whereas in humans RSV infection dynamics in 
anyone older than two are also mediated by a pre-existing adaptive 

Fig. 2. Viral kinetics parameter estimates in different aged cotton rats. We show distributions for the viral decay rate (left column), basic reproduction number 
(center column), and infecting time (right column) in the lung (top row), trachea (center row), and nose (bottom row) for RSV infections in animals of different ages. 

Fig. 3. Experimental data (dots) is plotted with the viral model predictions (solid lines) for ferret litter 1 (cyan) and ferret litter 2 (magenta). Data represents RSV 
infections in different aged ferrets at ages 0 (top left), 3d (top center), 7d (top right), 14d (bottom left), 28d (bottom right). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Table 2 
Best fit parameter estimates for ferrets of different ages.  

Parameter 0 days 3 days 7 days 14 days 28 days Prior 

Ferret 1 
β (g⋅(pfu⋅d)− 1

) 8.47× 10− 7  5.42× 10− 6  1.06× 10− 6  3.52× 10− 6  1.21× 10− 5  10− 8–10− 2  

95% CI (0.728–137)× 10− 7  (0.0253–8220)× 10− 6  (0.0194–14.8)× 10− 6  (0.561–1140)× 10− 6  (0.182–723)× 10− 5   

k (/d)  2.68 30.6 15.3 3.15 7.63 10− 3–102  

95% CI 1.22–31.7 0.00199–91.9 4.01–73.9 0.00220–64.2 0.00347–74.6  
δ (/d)  2.68 12.1 15.1 5.98 2.83 10− 3–102  

95% CI 1.15–62.5 0.00144–79.2 4.19–79.2 0.00327–60.4 0.00161–31.7  
p (pfu⋅(g⋅d)− 1

) 1.52× 108  1.25× 107  4.16× 108  5.11× 107  9.86× 106  104–1010  

95% CI (0.144–58.4)× 108  (0.00544–208)× 107  (0.107–51.8)× 108  (0.0211–296)× 107  (0.0455–1950)× 106   

c (/d)  2.68 0.46 15.1 2.15 2.49 10− 3–102  

95% CI 1.19–70.0 0.00135–25.2 3.62–63.5 0.00134–37.3 0.00169–75.9  
V0 (pfu/g)  1.10 1.01× 102  5.79× 10− 3  9.34× 10− 3  3.68× 10− 2  10− 3–105  

95% CI 0.00405–101 0.00286–5.57× 104  0.00118–0.0975 0.00112–0.717 0.00117–19.1  

R0  17.9 12.2 1.93 14.0 16.9  
95% CI 3.44–71.6 3.48–6.26× 107  1.43–4.66 8.86–3.71× 107  9.98–1.71× 107   

tinf (h)  2.99 4.13 1.61 2.53 3.11  
95% CI 0.748–4.63 0.0553–20.3 0.698–3.42 0.107–6.25 0.0648–5.89  

Ferret 2 
β (g⋅(pfu⋅d)− 1

) 2.17× 10− 6  1.40× 10− 6  1.41× 10− 6  1.71× 10− 6  2.15× 10− 6  10− 8–10− 2  

95% CI (0.414–853)× 10− 6  (7.27–3260)× 10− 6  (0.330–34.0)× 10− 6  (0.0947–131)× 10− 6  (0.275–20.0)× 10− 6   

k (/d)  17.3 7.48 8.49 6.05 5.39 10− 3–102  

95% CI 0.0313–84.8 0.00516–73.3 2.31–81.6 1.46–71.9 2.00–76.8  
δ (/d)  10.0 1.70 7.70 2.95 5.39 10− 3–102  

95% CI 0.0430–87.1 0.00158–11.4 2.34–58.1 1.56–57.1 1.75–62.8  
p (pfu⋅(g⋅d)− 1

) 7.02× 107  1.86× 108  1.32× 108  8.60× 107  4.40× 107  104–1010  

95% CI (0.0405–113)× 107  (0.000489–2.65)× 108  (0.0298–24.1)× 108  (0.301–588)× 107  (0.237–298)× 107   

c (/d)  0.84 16.8 8.22 3.06 5.40 10− 3–102  

95% CI 0.00169–7.74 0.00463–86.7 2.62–57.1 1.68–73.6 1.90–84.2  
V0 (pfu/g)  2.19 7.67× 10− 3  1.13× 10− 2  5.27× 10− 2  2.66× 101  10− 3–105  

95% CI 0.00135–4.03 0.00115–1.15 0.00131–0.299 0.00126–22.0 0.195–2110  
R0  18.2 9.11 2.94 16.32 3.26  
95% CI 6.79–7.91× 105  11.5–5.69× 105  1.69–9.18 2.80–80.6 1.47–9.43  

tinf (h)  2.75 2.10 2.49 2.80 3.49  
95% CI 0.200–5.52 0.121–6.67 0.814–4.43 0.547–4.05 0.874–6.45   

Fig. 4. Viral kinetics parameter estimates in different aged ferrets. We show the distributions of viral decay rate (left column), basic reproduction number (center 
column), and infecting time (right column) for RSV infections in ferret group 1 (top row) and ferret group 2 (bottom row). 
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immune response. A more detailed model that explicitly includes an 
immune response might capture parameter changes that are not 
apparent using a simplified model, as was done for influenza (Hernan-
dez-Vargas et al., 2014; Keef et al., 2017). An extended model could also 
incorporate the effect of previous RSV exposure. Use of a more detailed 
model would require detailed time course measurements of any immune 
responses included in the model in order to properly identify additional 
model parameters (Miao et al., 2011). Explicit incorporation of immune 
responses in the model, along with experimental measurements of these 
responses, could also improve estimates of some of the basic viral ki-
netics parameters. For example, the parameter c currently represents an 
average viral clearance rate due to all possible viral clearance mecha-
nisms. If the antibody response is explicitly represented in the model, 
and associated antibody time course measurements are used to help 
parameterize the antibody response, then c no longer includes the effect 
of viral clearance by antibodies, and the variance in estimates of c should 
decrease. 

There are methodological issues with the experimental data here that 
might also be hindering our ability to detect any age-related trends. As 
noted in the methods, neither data set represents the viral time course of 
infection in a single animal. One study of influenza in patients found that 
using a single median viral titer curve does not result in the same 
parameter estimates as fitting individual patient curves (Hooker and 
Ganusov, 2021). The averaging of several measurements at each time 
point along with the fact that each measurement is from a different 
animal could render age-related changes in parameters undetectable. 
There is also noise in the experimental data (La Barre and Lowy, 2001), 
leading to uncertainty in the parameter estimates that could potentially 
mask any underlying age-related changes. Additionally, measurements 
are taken only daily and only viral load is measured. This results in not 
enough information to properly identify some of the model parameters. 
We note that our results have large 95% confidence intervals and broad 
posterior parameter distributions, which makes it difficult to identify 
small age-dependent effects like the change in onset of immune response 
found by Wethington et al. (2019). While it might be difficult to reduce 
experimental error, there are other tactics that could help make 
parameter estimates more precise (Nguyen et al., 2015; 2016; Petrie 
et al., 2013). A study examining the effect of sampling frequency on 
parameter estimation in an acute model of viral kinetics noted a 
continual diminishing of variance in the parameter estimates as sam-
pling frequency increased to every 3 h (Nguyen et al., 2016). A study of 
parameter estimation in a viral kinetics model of chronic infection 
showed that the curvature of the cost function increases with increased 
sampling frequency, creating a sharper minimum and improving iden-
tifiability of the parameters (Portelo et al., 2013). Finally, another study 
showed that measurement of viral RNA, and inclusion of viral RNA in 
the model, improved the precision of parameter estimates (Petrie et al., 
2013). In order to capture age-related trends, it is also necessary to 
include more animals of different ages. Unfortunately, many of these 
solutions require use of more animals or additional experimental tech-
niques, which greatly increases the expense and time needed to conduct 
experiments. 

The use of animal models could also lead to results that differ from 
RSV infections in humans (Altamirano-Lagos et al., 2019). A study of 
RSV viral kinetic infection parameters showed that the decay rate is 
higher in African Green monkeys than in humans, but that the infecting 
time is lower than in humans (González-Parra and Dobrovolny, 2018b), 
pointing to the possibility that parameter estimates in different animals 
might not correlate to human infections. The cotton rat model has the 
advantage that the innate immune response to RSV is similar to the 
innate immune response in humans (Boukhvalova and Blanco, 2013) 
and appears to provide similar maternal transfer of passive immunity 
(Blanco et al., 2015; Prince et al., 1983). However, there are drawbacks 
to this animal model. Spread of the infection to the trachea and lower 
respiratory tract does not mimic spread in the respiratory tracts of 
humans (Altamirano-Lagos et al., 2019; Boukhvalova and Blanco, 

2013). There are also limited clinical manifestations and a lack of 
bronchiolitis (Prince et al., 1978), possibly indicating differences in the 
immune response to RSV infection. The ferret model is also thought to 
reproduce some aspects of changing RSV infections with age (Byrd and 
Prince, 1997). In particular, the decreasing penetration of virus into the 
lungs as young ferrets age (Prince and Porter, 1976) is similar to the 
trend observed in human infants. Unfortunately, there do not appear to 
be any studies yet examining early development of the immune response 
in young ferrets to assess whether the differences in infection dynamics 
are caused by changes in the immune response. 

The lack of a clear trend in age-related changes to the parameters 
examined here highlights the need for further study of the development 
of the immune response to RSV. Experiments including more detailed 
measurements of viral time course and time course of immune responses 
as animals age will help tease out how viral dynamics change in response 
to a developing immune system. 
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