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a b s t r a c t 

The analysis of viral kinetics models is mostly achieved by numerical methods. We present an approach 

via a Magnus expansion that allows us to give an approximate solution to the interferon-dependent viral 

infection model of influenza which is compared with numerical results. The time of peak viral load is 

calculated from the approximation and stays within 10% in the studied range of interferon (IFN) efficacy 

ε ∈ [0, 10 0 0]. We utilize our solution to interpret the effect of varying IFN efficacy, suggesting a competi- 

tion between virions and interferon that can cause an additional peak in the usually exponential increase 

in the viral load. 
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. Introduction 

The interplay of mathematical modeling and experiment re-

ulted in a major change in the current understanding of the

uman immunodeficiency virus (HIV) as well as medical treat-

ent after infection ( Perelson and Nelson, 1999 ). Modeling infec-

ious diseases has attracted much attention since then, extend-

ng the method successfully to hepatitis B and C ( Nowak et al.,

996; Neumann et al., 1998 ), influenza ( Baccam et al., 2006; Do-

rovolny et al., 2013 ), respiratory syncytial virus ( González-Parra

nd Dobrovolny, 2015; 2018 ), ebola ( Nguyen et al., 2015; Made-

ain et al., 2018 ), and other viruses ( González-Parra et al., 2018;

ires de Mello et al., 2018; Asquith and Bangham, 2007; Clapham

t al., 2014; Gallegos et al., 2016 ). However, the equations used in

iral kinetic models are often nonlinear and exclude closed analytic

olutions for quantities comparable with experiment. Approximate

olutions can be helpful to check and interpret the numerical re-

ults ( Smith et al., 2010 ). 

In mathematical models of infections one usually focuses on the

acroscopic observables and describes their time evolution by rate

quations. For the persistent diseases HIV and hepatitis B and C,

he mentioned observables are the susceptible target cells T and

he infected cells I , which produce the virions V . For influenza

t was shown that a separation of the infected cells in a group

alled the eclipse cells I 1 and active infected cells I 2 produces more
∗ Corresponding author. 
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ccurate numerical results ( Baccam et al., 2006 ) due to the fact

hat progeny virions are not detected for 6 to 8 h after infection

 Sedmak and Grossberg, 1973 ). 

Models incorporating various facets of the immune response

ave also been proposed ( Dobrovolny et al., 2013 ). The adaptive

mmune response typically takes several days to appear and has

ittle effect on the early viral time course ( Beauchemin and Handel,

011; Dobrovolny et al., 2013 ), but the innate response arises much

ore quickly. Although it contains many different components, the

nnate immune response is typically represented in mathemati-

al models by interferon (IFN) ( Dobrovolny et al., 2013; Pawelek

t al., 2012 ). IFN has an effect on the early time course of viral

oad of influenza as it is actively produced 24 h after the infection

 Roberts et al., 1979 ). IFN has a number of effects on biological pro-

esses that occur during an influenza infection such as interfering

ith synthesis and/or translation of viral RNA ( Samuel, 2001 ), in-

reasing cell apoptosis ( Balachandran et al., 20 0 0; Kuriakose et al.,

018 ), inducing natural killer cells ( Biron et al., 1999; Kronstad

t al., 2018; Jegaskanda et al., 2018 ), and inducing resistance to

nfection in cells ( Guo et al., 2019; Bedford et al., 2019 ). Math-

matical models have incorporated the effect of IFN in a vari-

ty of ways, starting with Ref. Baccam et al. (2006) where an

nterferon-dependent model of influenza was used to explain the

ccurrence of bimodal virus titer curves. More recent models have

lso examined the effect of IFN on the viral titer either on its own

r ( Pawelek et al., 2012; Handel et al., 2010; Saenz et al., 2010;

eviyang and Griva, 2018 ) in conjunction with other immune re-

ponses ( Bocharov and Romanyukha, 1994; Hancioglu et al., 2007;

andel et al., 2018; Yan et al., 2017; 2016; Price et al., 2015 ). De-
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spite the success that was achieved modeling influenza, all of the

mentioned results but one for the simplest case of influenza ki-

netics without an immune response (Ref. Smith et al., 2010 ) are

numerically achieved. 

In this paper we derive an approximate solution to the

interferon-dependent model for influenza with a method known as

the Magnus expansion. In Section 2 we introduce the interferon-

dependent mathematical model used for studying influenza kinet-

ics and we present the numerical results for the viral titer and the

time of peak viral load. Section 3 outlines preparing observations

and steps towards the approximate solution. In Section 4 we ap-

ply a Magnus expansion to the model, obtaining an approximation

formula for the viral load, which helps us to interpret the effect of

interferon on the time evolution of viral load. We then use the ap-

proximation to compute the time of peak viral load. After a discus-

sion of our results in Section 5 , we give some mathematical details

in Appendix A . 

2. Mathematical model and numerical analysis 

We introduce the system of ordinary differential equations,

used to describe virus infection kinetics of influenza incorporating

interferon response ( Baccam et al., 2006 ), 

˙ T = −β(F ) T V (1a)

˙ E = β(F ) T V − kE (1b)

˙ I = kE − δI (1c)

˙ 
 = p (F ) I − cV (1d)

F = 

2 

e λd (t−t p ) + e −λg (t−t p ) 
. (1e)

T is the amount of uninfected target cells and V is the vi-

ral titer. The infected cells are split into two distinct populations:

the eclipse cells E which are infected but not yet producing viri-

ons, and the population I which is actively producing virions. This

delay in the virus productivity accounts for various intracellular

processes ( Pinky and Dobrovolny, 2016 ). The amount of interferon

(Type I IFN) is denoted by F . Type I IFN mediates antiviral defense

mechanisms through activation of cell-intrinsic mechanisms that

operate in the infected cells ( Gamblin and Skehel, 2010 ). The tar-

get cells T are infected at a rate β( F ) TV whereupon they become
Fig. 1. Numerical results for the interferon-dependent model ( Eq. (1) ). (a) The time-cour

All green, black and blue curves show an exponential increase (phase 1) of viral load un

duration time V ( T ) (phase 2). For ε > 100, phase 1 is modified such that a saddle po

maximum before the viral peak (red curve for ε = 10 0 0 ). The exponential decrease of ph

the second peak, see Section 5 . (b) Fixing β(F ) = 

˜ β ( ε = 0 ) varying η reveals a qualitativel

of the references to color in this figure legend, the reader is referred to the web version o
clipse cells E ; the latter become active infectious cells I in a char-

cteristic transition time 1/ k . The infectious cells I produce virions

t a rate p ( F ) I and are depleted after a time 1/ δ. The virions are

leared at a rate cV . We choose to model the time course of inter-

eron using a functional formulation as in ( Quirouette et al., 2020 ).

he time course of interferon F typically exhibits a steep rise in the

eginning due to its production by infectious cells with character-

stic growth time 1/ λg until an approximate peak time t p . After the

eak it is depleted by binding to cellular IFN receptors, which are

nternalized, or through degradation ( Baccam et al., 2006 ) in a time

/ λd ( Baccam et al., 2006; Dobrovolny et al., 2013; Pawelek et al.,

012; Quirouette et al., 2020 ). 

We model the effect of interferon F on the infection of target

ells and the production of virus through the functions β( F ) and

 ( F ), respectively, similar to the effect of a drug as 

(F ) = 

˜ β

1 + εF 
, p( F ) = 

˜ p 

1 + ηF 
, (2)

ith 

˜ β and ˜ p corresponding to the case without interferon and

and η two free parameters, connected to the IFN effectiveness

 Canini and Perelson, 2014 ). In contrast to the other parameters in

q. (1) , we vary ε and η in a range of ε, η ∈ [0, 10 0 0] ( Baccam

t al., 2006; Pawelek et al., 2012; Handel et al., 2010; 2018; Cao

t al., 2015; Cao and McCaw, 2017 ), in order to obtain the time,

 peak , associated with the peak viral load V peak , V (t peak ) = V peak .

his will give us a measure of accuracy of our approximate solu-

ion of the viral load. 

We investigate the time course of the quantities in our model

umerically ( Fig. 1 ) in a range up to 15 days. First, we choose

p(F ) = ˜ p , meaning η = 0 , and recover a qualitatively similar be-

avior for different values of ε < 100: an exponential increase

phase 1) followed by an exponential decrease (phase 2) in agree-

ent with Ref. Baccam et al. (2006) . However, the effect of inter-

eron causes a delay of the exponential increase in phase 1 in the

ery beginning, while it makes no difference in phase 2. 

For ε > 100, phase 1 is modified: The curvature of the growth

hase is modified by the appearance of a saddle point (magenta

urve for ε = 300 ), transforming into a second local maximum be-

ore the viral peak (red curve for ε = 1 .e + 03 ). Now looking at the

ffect of p ( F ), maintaining β(F ) = 

˜ β fixed ( ε = 0 ), we observe a

ualitatively similar behavior with one exception: The viral peak

hrinks with increasing η until η ≈ 100 and rises again from

> 100 on. 
se of the viral load is plotted for different values of ε and setting η = 0 ( p(F ) = ˜ p ). 

til a maximum V peak is reached and then an exponential decay until the infection 

int is formed (magenta curve for ε = 300 ), which transforms into a second local 

ase 2 stays the same but is delayed in time. For an explanation of the formation of 

y similar behavior, although the value of viral peak load changes. (For interpretation 

f this article.) 
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Fig. 2. Numerical results for the time of peak viral load. (a) We show the dependence of peak viral load on IFN efficiency parameters ε and η. The red curve was obtained 

by setting η = 0 and varying ε, and the blue curve the other way around. As expected from Fig. 1 , both show a similar behavior, increasing for most of chosen range of ε

and η. Both change their curvature around ε, η ≈ 100, which is the region where the saddle point in Fig. 1 forms. (b) The contour plot shows the variation of both ε and η. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Parameters and starting conditions for Eq. (1) . The parameters and initial val- 

ues of the different quantities (where T (0) = T 0 , E(0) = E 0 , . . . ) for modeling 

influenza are taken mostly from the model proposed by Pawelek et al. (2012) 

which has no eclipse phase E . In agreement with models that include this ad- 

ditional phase ( Pinky and Dobrovolny, 2016; Saenz et al., 2010; Baccam et al., 

2006 ), the value of k and δ were chosen to be same. The parameters λg , λd 

were chosen according to Quirouette et al., 2020 , while t p was set to 2 days 

based on experimental data from human and horse ( Hayden et al., 1998; Saenz 

et al., 2010 ). The initial interferon load depends on the units measured and is 

usually normalized to 1 ( Cao and McCaw, 2017; Pawelek et al., 2012 ). By vary- 

ing the two IFN efficiency parameters ε and η in a range of two orders of mag- 

nitude larger than in the Pawelek-model we compensate for the small value of 

F 0 . 

k [1/d] δ [1/d] c [1/d] ˜ β [1 / d] ˜ p [1 / d] λd [1/d] λg [1/d] 

2 2 15 4.70e −05 5.3e −3 1 2 

t p , [d] T 0 E 0 I 0 V 0 F 0 
2 1.e + 11 0 0 1 3.65 2 

i  

a  

T  

n

c

T  

p  

P  

a  

a

c  

w  

t  

o  

i  

m

V  

T  

p

β

1 We define here a 	 b if a/b ≤ O(10 −2 ) . 
Again fixing η = 0 and varying ε ( t peak (ε, η = 0) ), and the other

ay around ( t peak (η, ε = 0) ) we compute the time of peak vi-

al load Fig. 2 . For both scenarios we obtain an increasing time

f viral peak with increasing IFN efficiency parameter, where the

ualitative behavior is independent of which parameter is fixed

nd which varied. Both graphs have an inflection point around η,

≈ 100. For η, ε > 150 the values of the time of viral peak match

 peak (ε, η = 0) ≈ t peak (η, ε = 0) . We therefore simplify our upcom-

ng analysis by considering only β( F ( t )) and p = ˜ p fixed. 

. Preliminary analysis 

An approximated solution for the infected cells in the

nterferon-independent case is derived in Ref. Smith et al. (2010) .

imilarly, we split the observation time t in our model into a phase

 ( T ( t ) ≈ T 0 ) and a phase 2 ( T ( t ) ≈ 0). Formally, we justify this by

ntegrating Eq. (1a) , thus reducing the number of equations from

ve to four: 

 (t) = T 0 exp 

(
−

∫ t 

0 

d t ′ β(F ) V (t ′ ) 
)

. (3)

or t sufficiently small, T ≈ T 0 , and we define the time t split which

plits phase 1 ( t < t split ) and phase 2 ( t > t split ) by 

 t split 

0 

d t ′ β(F (t ′ )) V (t ′ ) = 1 . (4)

his definition can be mathematically motivated: From the IFN-

ndependent solution we know that for times t < t split the viral

oad is exponentially increasing V ( t ) ~ e γ t for some γ > 1. We will

how later that our approximated solution ( Eq. (21) ) is exponen-

ially increasing. Because the integral of an exponential is an ex-

onential, we have T ~ exp ( γ 1 exp ( γ 2 t )) for some γ 1 and γ 2 . One

efinition of the Heaviside function H ( x ) ( Abramowitz et al., 1966 )

s 

(x ) = lim 

a → 0 
e −e −x/a 

, H(0) = 1 /e. (5)

he Heaviside function is a good functional approximation for the

arget cells T since we can relate the parameters γ1 ≈ 3 
√ 

b − a �
 where a and b will be introduced in Eq. (17) . This math-

matical argument is in line with a similar definition given by

mith et al. (2010) who define the splitting time t split to be the

ime when T reaches 10% of its initial value. In this work we focus

n an approximated phase 1 solution, since the solution for phase

 is the same as in the interferon-independent two-phase model
n Smith et al. (2010) (we derive an explicit form of the phase 2

pproximation in Section A.2 ). Taking a look at the parameters in

able 1 , we notice the following relation concerning orders of mag-

itude for influenza: 

, k, δ 	 ˜ β × ˜ p × T 0 (6) 

his statement seems to be generally true for a wide range of

apers of modeling influenza viral kinetics ( Baccam et al., 2006;

awelek et al., 2012; Cao et al., 2015; Cao and McCaw, 2017; Pinky

nd Dobrovolny, 2016; Yan et al., 2016; Saenz et al., 2010 ). We will

lso need the similar statement in the following, 

, k, δ 	 β(F (t)) × ˜ p × T 0 , (7)

hich is only true for ε < 100 1 and all considered measurement

imes t . Both conditions (6) and (7) will enter in the derivation

f the approximate solution. To obtain another relation concern-

ng the order of parameters, we rescale our model in the following

anner: 

 
→ V new 

= T 0 V 

˜ p 
→ 

˜ p new 

= T 0 ̃  p . (8)

his leaves us with another relation concerning our new re-scaled

arameters, 

˜ 	 c, k, δ 	 ˜ p new 

. (9) 
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Note also, that this re-scaling changes nothing about our previ-

ous relation Eq. (7) . We rewrite the resulting equations for x =
(E, I, V new 

) T during phase 1 in matrix form 

d 

d t 
x (t) = A (t ) x (t ) , A (t ) = 

( −k 0 β(t) 
k −δ 0 

0 

˜ p new 

−c 

) 

, (10)

which is the form we need for solving as a Magnus expansion. 

4. Application of the Magnus expansion 

An exact, but formal solution of Eq. (10) can be given on the

one hand by a Dyson series ( Dyson, 1949 ) 

x (t) = T 
(

exp 

∫ t 

0 

d t ′ A (t ′ ) 
)

, (11)

which is often used in perturbative quantum field theory (with T 
denoting the time-ordering operator), or on the other hand by a

Magnus expansion ( Magnus, 1954 ), 

x (t) = exp ( �(t) ) , �(t) = 

∞ ∑ 

k =1 

�k (t) . (12)

Practically, one truncates the Dyson series as well as the Magnus

expansion after a finite number of terms. Because we already know

that the numerical data initially exhibits an exponential increase

preceded by a small delay in the beginning, we will use the Mag-

nus expansion for approximating our phase 1 solution here. 

Following Section A.1 , the important integral that has to be

done for calculating �1 , is : 

f (t) ≡
∫ t 

0 

d t 1 
1 

1 + εF (t 1 ) 
. (13)

We integrate Eq. (13) numerically and state �1 : 

�1 = 

( −kt 0 

˜ β f (t) 
kt −δt 0 

0 

˜ p new 

t −ct 

) 

. (14)
Fig. 3. An approximated solution of phase 1 by a Magnus expansion (red) for different

ε = 1 truncated at the first term �1 gives a good approximation to the numerical data (b

is still very good. (c) For ε = 300 the truncation of the Magnus expansion deviates from 

numerical data. The Magnus solution also forms a saddle point like in the numerical da

approximation also exhibits a second local maximum. Again both curves intersect at the

qualitative behavior as the numerical solution because the approximation only holds for

legend, the reader is referred to the web version of this article.) 
f we truncate the Magnus series at the first term, we need to di-

gonalize �1 in order to evaluate its exponential. The eigenvalues

re computed by solving the secular equation: 

 = −det (�1 − λI 3 ×3 ) (15a)

= λ3 + t(c + k + δ) λ2 + t 2 (kδ + kc + δc) λ

+ t 2 k (δct − ˜ p new ̃

 β f (t)) . (15b)

This can be solved by the standard method of Cardano. Taking

he orders of magnitude of our parameters ( Eqs. (6) –(9) ) into ac-

ount, we find an approximation for our three eigenvalues λ0 (t) ∈
 and λ+ (t) , λ−(t) ∈ C 

0 = 

3 
√ 

b f (t ) t 2 − at , λ+ = 

3 
√ 

b f (t ) t 2 e 
2 π i 

3 − at , 

− = 

3 
√ 

b f (t ) t 2 e −
2 π i 

3 − at, (16)

ith the parameters 

 = 

c + k + δ

3 

, b = k ̃  p new ̃

 β = k ̃  p ̃  βT 0 . (17)

The components v x 
j 
, v y 

j 
, v z 

j 
of the orthonormalized eigenvectors

 j ∈ C 

3 , j = { 0 , + , −} associated with the eigenvalues λ0 , λ+ , λ−
re: 

 

z 
j (t) = 

1 √ 

1 + 

(
˜ β f (t) 
λ j + kt 

)2 

+ 

(
ct+ λ j 

˜ p new t 

)2 
, v x j ( t) = 

˜ β f ( t) 

λ j + kt 
v z j , 

 

y 
j 
(t) = 

ct + λ j 

˜ p new 

t 
v z j . (18)

urther we determine the vector r = (r 1 , r 2 , r 3 ) 
T in Eq. (A.6) which

orresponds to our initial conditions. At time t = 0 , the eigenval-

es vanish, λ j (0) = 0 . It also holds for the combinations (v x 
j 
) 2 , v x 

j 
·

 

y 
j 
, (v y 

j 
) 2 	 v x 

j 
· v z 

j 
, v y 

j 
· v z 

j 
	 (v z 

j 
) 2 and v z 

j 
(0) ≈ 1 . We can compute
 values of the IFN efficiency ε and fixed η = 0 . (a ) The Magnus solution (red) for 

lue) in phase 1 of the viral model of influenza. (b) For ε = 100 the approximation 

the numerical data, but around the time of peak the approximation intersects the 

ta. (d) Although the Magnus solution seems to deviate strongly, the course of the 

 time of peak viral load. It is surprising that the Magnus solution shows the same 

 ε < 100 (see Eq. (7) ). (For interpretation of the references to color in this figure 
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Fig. 4. Contribution of the first V exp and second summand V osc of the Magnus solution. The full Magnus solution (red) is composed of the exponential V exp (blue) and the 

oscillating part V osc (yellow). For the two different values of the Interferon efficacy their contribution is compared. Because the relation V osc /V exp ≤ 2 e −3 / 2 3 
√ 

b f (t ) t 2 holds we 

can ignore V osc without reducing the quality of the approximation for larger times. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 5. Viral load and its second derivative in the Magnus solution and the numerical data. (a), (c) Although the Magnus solution is valid by definition only for ε < 100, 

the graph of the numerical data in Subfig. (a) and the Magnus solution match for the range of ε < 500 until the viral peak (red region in (c) , in agreement with the curves 

shown in Fig. 3 . The formation of a second peak in the range of ε > 500 is stronger in the Magnus solution compared to the numerical data (dark blue region in the north 

of (a) ). (b), (d) The second derivative in time of the Magnus solution and the numerical data was computed numerically. The Magnus solution changes its curvature heavily 

before the viral peak for ε > 200 (blue region in the north in (b) ), which is seen as a second local maximum. However, the numerical data exhibits only a small change of 

curvature (light blue bow in the north in (d) ), which is seen as inflection point in the viral load before the viral peak. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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W  

a

V

w

4
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a
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F
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(0 , 0 , 1) T = (v 0 , v −, v + )(0) diag 
(
e λ0 , e λ− , e λ+ 

)
( 0)( v 0 , v −, v + ) † (0) r 

(19) 

 (v 0 , v −, v + )(0)(v 0 , v −, v + ) † (0) r ≈ diag (0 , 0 , 3) r (20)

here we have neglected all terms smaller than v z 
j 
(0) in the sec-

nd line. Thus we can deduce r 3 = 1 / 3 and r 1 , r 2 undetermined.

e set r 1 , r 2 = 0 for simplicity. We are now ready to state a closed,

pproximate solution for V ( t ) in phase 1: 

 (t) = V exp (t) + V osc (t) = 

V 0 

3 

e 
3 
√ 

b f (t ) t 2 −at 

+ 

2 V 0 

3 

cos 

(√ 

3 

2 

3 
√ 

b f (t ) t 2 

)
e −

1 
2 

3 
√ 

b f (t ) t 2 −at , (21) 
ith the parameters a and b given by Eq. (17) . 

.1. Interpretation of the Magnus solution 

The first summand V exp of the Magnus solution ( Eq. (21) ) is an

xponentially increasing term, dominating for large enough times

nd causing the exponential increase. The second summand V osc 

s an exponentially decreasing oscillation term, dominating for

mall enough times causing a small delay in the beginning Fig. 5 .

or the relative contribution the relation V osc /V exp ≤ 2 e −3 / 2 
3 
√ 

b f (t ) t 2 

s valid, so we can safely neglect the second summand V osc 

ithout significantly reducing the quality of approximation when

nspecting the viral peak time ( Fig. 4 ). It is illuminating to
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Fig. 6. Time of peak viral load in the Magnus solution. The conditions in 

Eq. (24) (red) and Eq. (25) (blue) were used to determine the peak viral load of 

the Magnus solution. Both conditions show the monotonically increasing behavior 

as recovered in the numerical data. The condition on the target cells is half a day 

off for ε < 200 and approaches the numerical data. The condition on the viral load 

is within an error of 10% for the whole investigated range of IFN efficacy. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 

5

 

m  

t  

t  

p  

t  

s  

v  

l  

v  

t  

t  

T  

f

 

I  

a  

p  

i  

d  

a  

h  

o  

r  

l  

i  

i  

a  

e  

v  

p  

i

 

t  

t  

t  

c  
look at the limit 

lim 

ε→ 0 
V (t) = 

V 0 

3 

e 

(
3 √ 

b −a 

)
t + 

2 V 0 

3 

cos 

(√ 

3 

3 
√ 

b 

2 

t 

)
e 

−
(

3 √ 

b / 2+ a 
)

t = V 

ind . 

(22)

This yields the interferon-independent phase 1 solution of the

two-phase solution stated in Smith et al. (2010) . Comparing V 

ind 

with V , interferon postpones the time at which the first term dom-

inates (due to 
3 
√ 

b t → 

3 
√ 

b f (t ) t 2 and f ( t ) ≤ t ) and slows down

slightly the exponential growth, which asymptotically converges to

the interferon-independent one. For ε > 100, the second term be-

comes more important, revealing the formation of a second local

maximum. Although the Magnus solution was derived by assum-

ing ε < 100 ( Eq. (6) ), the Magnus solution shows similar qualita-

tive behavior as the numerical data for large ε and intersects the

numerical data at the time of viral peak. 

4.2. The time of peak viral load in the Magnus solution 

We would like to check how accurate our obtained approximate

solution is. This is achieved by calculating the time of peak viral

load, testing if we recover a similar logarithmic behavior as seen

in Fig. 1 . In Section A.2 we derive peak viral load time t peak from

the phase 1 solution, 

 peak = t split + 
( ̃  E , ̃  I , ̃  V ) . (23)

We obtain t split from the condition on the target cells 

T (t split ) = T 0 − I(t split ) − E(t split ) = T 0 /e, (24)

which is equivalent to Eq. (4) , and solve numerically. Having t split ,

we can determine 
. It turns out, that 
 is approximately in-

dependent of ε (see Section A.2 ), so we can set up yet another,

simpler condition for the viral load: We compute ˜ V ind for the

interferon-independent viral load V ind ( t ) and demand 

˜ 
 ind = V (t split ) . (25)

We can assume further that V (t split ) = V ind (t split ) , supported by

the numerical data ( Fig. 1 ). This condition for the viral load also

leads us to a transcendental equation and we solve numerically. As

depicted in Fig. 6 , both conditions give a monotonically increas-

ing peak time with increasing ε. The condition on the viral load

( Eq. (25) ) gives a better approximation for ε < 150, while the

condition on the target cells deviates for ε < 150 from the ex-

act result by about a half day. Both curves exhibit the change of

left to right curvature with variation of the IFN efficiacy around

ε ≈ 100. The error between numerical data and Magnus approxi-

mation stays within less than 10% within a wide range of ε. 

4.3. Issues with higher order terms 

The Magnus expansion for our approximate solution ( Eq. (21) )

was truncated right after the first term. We tried to calculate

higher order terms �2 , �3 , . . . to decrease the error between the

Magnus solution and the numerical data. The computation of

higher order terms suggests that our ansatz ( Eq. (12) ) is asymptot-

ically divergent: Taking the second order term ( �2 ) into account,

we obtain the same eigenvalues as in the first order ( Eq. (16) ).

The eigenvectors change sightly, but do not affect our solution. The

third order (including �3 ) gives eigenvalues that show a deviation

of several orders of magnitude from the ones we have in the first

order. This is of course not a formal proof of divergence, but it

gives a hint that we probably work with a divergent ansatz with

the Magnus expansion. The behavior of a series which gives a good

approximation in some finite order, but is divergent as a whole, is

known as asymptotically divergent ( Boyd, 1999 ). 
. Discussion and conclusion 

We found an approximate solution for an interferon-dependent

odel for influenza with perturbation methods. We first studied

he dynamics of the viral load numerically by taking experimen-

ally measured parameters into account. We varied the IFN efficacy

arameters ε and η connected to parameters of the viral produc-

ion rate p and target cell depletion rate β separately ( Fig. 1 ) and

imultaneously ( Fig. 2 ). Both revealed an increasing time of peak

iral load with increasing IFN efficacy and also a qualitatively simi-

ar behavior. While the peak viral load stayed nearly the same with

ariation of ε it varied with η. The exponential increase after infec-

ion was recovered only for small ε and η. For larger IFN efficacy

he phase I curvature changed a lot and a second peak was formed.

he decreasing viral load after infection was not altered by inter-

eron. 

We explain the formation of the second peak caused by large

FN efficacy in the following. The interferon load was modeled by

 fast increasing and then decreasing function ( Eq. (1e) ) with a

eak interferon load around the second day after infection. This

s consistent with experimental measurements of the IFN response

uring influenza infection ( Dobrovolny et al., 2013; Quirouette et

l., 2020 ). Looking at the viral load during its time evolution for

igh IFN efficacy ( ε > 500), as the viral load increases the amount

f interferon also increases. A high efficacy reduces the production

ate p . This leads to a reduction in viral load, only if the efficacy is

arge enough. As time passes, virions deplete the interferon again

n a characteristic time 1/ λd . A local minimum of the viral load

s reached around the IFN peak time. After the IFN peak time the

mount of IFN shrinks again. Finally, the virions succeed and rise

xponentially until their time of peak. This competition between

irions and interferon results in an increase of the time of viral

eak and quantities connected to the time of viral peak like the

nfection duration. 

We further proceeded with a derivation of an approximate solu-

ion of the proposed interferon-dependent model. Building on the

wo phase approximation, we could provide an approximate solu-

ion in terms of the Magnus expansion in first order that comes

lose to our numerical data of the model. With the help of the
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etrieved solution we were able to give an interpretation of the ef-

ect of IFN. The approximate solution interpreted and revealed the

hange in curvature due to the early competition of IFN and viri-

ns. The error for our solution in the stated range of the IFN effec-

iveness was smaller than 10%. Thus, the Magnus method provides

 very good approximation to the IFN-dependent model. 

Additionally, this approximation shows that the innate im-

une response of interferon can be seen as a small perturba-

ion to a system without immune response. The given approx-

mated solution states in a mathematical way the manner in

hich interferon adds to the system without interferon: The con-

tant exponential increase of the interferon-independent model

s manifested in a linear increasing exponent with time. In the

nterferon-dependent model this linear exponent is changed to

 time-dependent function, the integral of our interferon func-

ion. The interferon-independent system is recovered as a spe-

ial case of zero IFN-efficacy, simplifying to the phase-1 solution

f Smith et al. (2010) to a simple formula ( Eq. (22) ). 

The general method of the Magnus expansion might be fur-

hermore applicable for modeling an immune response in terms

f antibodies. Similarly to the approach adopted in Bocharov and

omanyukha (1994) ; Handel et al. (2010) ; Hancioglu et al. (2007) ;

ee et al. (2009) , the virus clearance rate c can be adjusted accord-

ng to 

 
→ c + k v 
A (t) 

A m 

, A (t) = 

A m 

1 + ( A m 
A 0 

− 1) e −αt 
, (26)

ith A 0 and A m 

initial and final saturation of antibodies, α growth

ate, k v binding capacity. Following the path taken in this work,

ne can make an educated guess for the target cells T to get rid

f the nonlinear term TV and solve using the Magnus approxima-

ion. Modeling drug resistance is likewise a candidate for a possi-

le Magnus approximation where viral models for Hepatitis C have

een proposed ( Conway and Perelson, 2014; Shudo et al., 2009 )

hich use a time dependent function replacing a parameter. Gen-

rally, if a model in the ODE-governed field of viral kinetics can be

roposed with a time-dependent function replacing a parameter,

 Magnus expansion can be sought. The formerly stated approxi-

ate solution might be useful in more difficult problems including

n approximate solution to the recently proposed PDE-model de-

cribing the localization and spread of influenza infection within

he human respiratory tract ( Quirouette et al., 2020 ). 
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ppendix A. Magnus expansion and the phase 2 solution 

1. Magnus expansion 

We give a quick introduction into the method of the Magnus

xpansion introduced by Magnus (1954) which is - in the case of

ts convergence - the exact solution to a time-dependent ODE of

he form ( Blanes et al., 2009 ) 

d 

x (t) = A (t ) x (t ) (A.1)

d t 
 (t) ∈ [ 0 , ∞ ) × R 

n , A (t) ∈ [ 0 , ∞ ) × R 

n ×n , x (0) = r ∈ R 

n . (A.2)

n viral kinetics models one is only interested in positive times t ,

quations for real, measurable quantities (e.g. viral load) which are

ollected in a vector x , and real rates stored in A . We start with the

bservation that for the scalar case, n = 1 , Eq. (A.1) can be readily

ntegrated: 

 (t) = exp 

(∫ t 

0 

d t 1 A (t 1 ) 

)
r. (A.3) 

agnus expressed the general solution of Eq. (A.1) in terms of the

xponential of an analytic function �(t) = 

∞ ∑ 

k =1 

�k (t) , 

 (t) = exp 

(
�(t) 

)
r. (A.4)

The first three terms of the power series are given by 

1 = 

∫ t 

0 

d t 1 A (t 1 ) , (A.5a)

2 = 

1 

2 

∫ t 

0 

d t 1 

∫ t 1 

0 

d t 2 
[
A (t 1 ) , A (t 2 ) 

]
, (A.5b)

3 = 

1 

6 

∫ t 

0 

d t 1 

∫ t 1 

0 

d t 2 

∫ t 2 

0 

d t 3 

([
A (t 1 ) , 

[
A (t 2 ) , A (t 3 ) 

]]
+ 

[
A (t 3 ) , 

[
A (t 2 ) , A (t 1 ) 

]])
, (A.5c) 

here [ A, B ] = AB − BA denotes the commutator. The series is in-

erpreted as follows: �1 is the same contribution as in the scalar

ase and the only one if [ A (t 1 ) , A (t 2 )] = 0 , so the matrices com-

ute for all times t 1 , t 2 . If they do not commute one has to con-

ider nested commutators. Practically, one can truncate the power

eries, which gives an approximate solution if the series converges.

he matrix exponential exp ( �( t )) can be calculated decomposing

into its Jordan form J . With the matrix P , composed of the gen- 

ralized, orthonormal eigenvectors v j of �, and the n -Jordan blocks

 m 

, m ∈ { 1 , ., n } , of J , the Magnus solution is given by 

 (t) = P diag 
(
e J 1 , . . . , e J n 

)
P T r. (A.6)

2. Phase 2 solution and time of peak viral load 

We solve Eq. (1) in the phase 2 approximation (target cells T =
 ), defined for times t > t split (see Eq. (4) ). We impose a matching

ondition for phase 1 and 2 solution 

 

phase 1 

∣∣∣
t= t split 

= x phase 2 

∣∣∣
t= t split 

(A.7) 

nd now look at the case δ = k, δ � = c (Tab. 1 ). By successive inte-

ration of Eq. (1b) , then (1c) and (1d) we get the phase 2 solution,

(t) = 

˜ E exp (−k (t − t split )) (A.8a)

(t) = k ̃  E (t − t split ) e 
−k (t−t split ) + ̃

 I e −k (t−t split ) (A.8b)

 (t) = 

˜ p 

c − k 

[ 
˜ I + k ̃  E 

(
1 

k − c 
+ (t − t split ) 

)] 
e −k (t−t split ) + 

˜ V e −c(t−t split ) , 

(A.8c) 

ith integration constants ˜ E , ˜ I and 

˜ V to be determined by

q. (A.7) . The maximum viral load can be obtained by the phase

 solution, 
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Fig. A.7. Dependence of 
 on the IFN efficacy ε. 
 is nearly independent of ε. 

 

 

 

 

 

 

 

 

Y  

 

t

 

 

 

 

 

 

c

P  

a

u  

T

z

z  

W

A

C  

B

Q

 

D  

a

u  

I

R

A  

 

 

 

B  

 

 

B  

 

B  

 

 

B  

 

B  

B  

 

B  

 

 

C  

 

C  

 

 

 

C  

 

0 = 

d 

d t 
V = 

˜ p 

c − k 
e −k (t−t split ) 

[ 
−k 

(
˜ I + k ̃  E 

(
1 

k − c 
+ (t − t split ) 

))
+ k ̃  E 

] 
− c ̃  V e −c(t−t split ) (A.9a)

⇔ e (k −c)(t−t split ) = 

˜ p k 

c ̃  V (c − k ) 

[ 
−
(

˜ I + k ̃  E 

(
1 

k − c 
+ (t − t split ) 

))
+ 

˜ E 

] 
(A.9b)

= 

˜ p k 

c ̃  V (c − k ) 

[
−
(

˜ I + 

k ̃  E 

k − c 

)
+ 

˜ E 

]
− k 2 ˜ E p 

c ̃  V (c − k ) 
(t − t split ) (A.9c)

Defining 

x ≡ t − t split , g 1 = k − c, g 2 ≡ −k 2 ˜ E ̃  p 

c ̃  V (c − k ) 
, 

g 3 ≡
˜ p k 

c ̃  V (c − k ) 

[
−
(

˜ I + 

k ̃  E 

k − c 

)
+ 

˜ E 

]
(A.10)

leads to 

e g 1 x = g 2 + g 3 x. (A.11)

This can be solved by defining further 

y ≡ g 1 x, g 4 ≡ g 3 
g 1 

, z ≡ −y − g 2 
g 4 

(A.12)

leading to 

ze z = −1 

g 
e −g 2 /g 4 . (A.13)

The solution of the equation Ye Y = X is the Lambert-W function

 = W(X ) . When 1/ e < X ≤ 0 the Lambert-W function splits into

two branches W 0 (X ) and W −1 (X ) . For the maximum, we need

W −1 (X ) . Substituting back, yields 

 peak = t split −
1 

g 1 

{
g 2 
g 4 

+ W 

(
−e −g 2 /g 4 

g 4 

)}
≡ t split + 
( ̃  E , ̃  I , ̃  V ) 

(A.14)

with the quantity 
( ̃  E , ̃  I , ̃  V ) depending on the matching values

given by Eq. (A.7) . However it can be shown that 
 is approxi-

mately independent of ε ( Fig. A.7 ). This is needed in the derivation

of the condition for the viral peak time. 

A3. Derivation of the approximate eigenvalues Eq. (16) 

We start with a revision of the method of Cardano. A cubic

equation 

λ3 + Aλ2 + Bλ + C = 0 (A.15)
an be solved by defining 

 = B − A 

2 

3 

, Q = 

2 A 

3 

27 

− AB 

3 

+ C, D = 

(
Q 

2 

)2 

+ 

(
P 

3 

)3 

(A.16)

nd 

 = 

3 

√ 

−Q 

2 

+ 

√ 

D , v = 

3 

√ 

−Q 

2 

−
√ 

D . (A.17)

he three solutions are 

 1 = u + v − A 

3 

, z 2 = ue 
2 π i 

3 + v e −
2 π i 

3 − A 

3 

, 

 3 = ue −
2 π i 

3 + v e 
2 π i 

3 − A 

3 

. (A.18)

e have in our case ( Eq. (15) ) 

 = t(c + k + δ) , B = t 2 (kδ + kc + δc) , 

 = t 2 k (δct − ˜ p new ̃

 β f (t)) . (A.19)

y considering Eqs. (6) –(9) we can approximate 

 = 2 A 

3 / 27 ︸ ︷︷ ︸ 
O(c 3 ) 

+ AB/ 3 ︸ ︷︷ ︸ 
O(c 3 ) 

+ t 3 kδc ︸ ︷︷ ︸ 
O(c 3 ) 

− t 2 k ̃  p new ̃

 β f (t) ︸ ︷︷ ︸ 
O(c ̃ p new ̃

 β

≈ −t 2 k ̃  p new ̃

 β f (t) 

(A.20)

 = ( Q/ 2 ) 
2 ︸ ︷︷ ︸ 

O((c ̃ p new ̃
 β) 2 ) 

+ ( P/ 3 ) 
3 ︸ ︷︷ ︸ 

O(c 6 ) 

≈ ( Q/ 2 ) 
2 (A.21)

nd 

 ≈ 0 , v ≈ 3 

√ 

t 2 k ̃  p new ̃

 β f (t) . (A.22)

nserting this into Eq. (A.18) gives the parameters in Eq. (16) . 
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