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Abstract: Mathematical models of the electrical response of cardiac cells are used to help develop an
understanding of the electrophysiological properties of cardiac cells. Increasingly complex models are
being developed in an effort to enhance the biological fidelity of the models and potentially increase
their ability to predict electrical dynamics observed in vivo and in vitro. However, as the models
increase in size, they have a tendency to become unstable and are highly sensitive to changes in
established parameters. This means that such models might be unable to accurately predict person-to-
person variability, dynamical changes due to disease pathologies that alter ionic currents, or the effect of
treatment with antiarrhythmics. In this paper, we test the predictive limits of two mathematical models
by altering the conductance of Ca2+, Na+, and K+ channels. We assess changes in action potential
duration (APD), rate dependence, hysteresis, dynamical behavior, and restitution as conductance is
varied. We find model predictions of abrupt changes in measured quantities and differences in the
predictions of the two models that might be missed in a less systematic approach. These features can
be compared to experimental observations to help assess the fidelity of the models.
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1. Introduction

Mathematical models of cardiac electrophysiology are being developed in the hope that they might
one day be used to guide personalized treatment of cardiac diseases [29]. Unfortunately, detailed
models can be problematic [35]. The large number of free parameters in complex models can make
parameter identifiability difficult [10], particularly in a time frame that is clinically useful. It is also
intuitively difficult to understand how changes in one parameter alter model predictions and whether
estimated parameter values fall within a biologically realistic range. Finally, complex models have
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problems with numerical stability [9, 31] and uniqueness of the solutions to the model [47, 67]. This
limits the models’ usefulness in making predictions about scenarios outside the “normal” range, such
as patients with genetic mutations changing their electrophysiology [94] or patients being treated with
antiarrhythmics [33].

Mathematical models of cardiac cell ionic currents developed as extensions of the
Hodgkin-Huxley model of the squid giant axon [34], with the first simply including a second
potassium current [55] along with Hodgkin and Huxley’s sodium, potassium, and leakage currents.
Since then, increasingly complicated ionic current models have been developed for different animal
species and different types of cardiac cells within the heart [30, 56]. New currents are added based on
experimental studies that measure individual ionic currents [13, 19] and the resulting new models are
often validated by comparing to experimental data consisting of multi-current processes such as an
action potential [12, 70]. Beyond this broad validation of a model, there is not much study of how the
addition of a new current alters the dynamics of existing model currents and there is usually no
experimental data on how changes in one current alter the dynamics of the other currents or the entire
system [20, 80].

This limited validation and testing of new models has consequences for the attempt to personalize
models for clinical use. When personalizing a model, parameters of the model are chosen to fit some
aspect of a patient’s electrophysiological response. These parameters are used in the model to simulate
a patient’s response to treatment, meaning that some of these parameters are further perturbed from
their base values. Since most models are so finely tuned to the experimental conditions from which they
derive, it is not clear that perturbing the model parameters in this way will lead to accurate predictions.
Researchers have started to examine this by studying populations of models with parameters randomly
drawn from specified distributions [46, 52, 54, 78, 86]. An alternative approach is a sensitivity analysis
to examine how different parameters affect a certain outcome [79]. Both of these techniques have been
useful for correlating subsets of parameter values with certain desired (or undesired) outcomes.

In this paper, we use a more systematic approach to examining the limitations of a cardiac model by
continuously varying the value of a single parameter. We focus on the effect of currents, specifically
the sodium, potassium, and calcium currents and examine how variation in the conductivities alters the
predicted model outcome. Changes in current conductivities can often be reproduced experimentally
through the use of antiarrhythmic drugs [75], so model predictions of the effect of changes in current
can be verified experimentally. By systematically varying parameters, we can identify specific values at
which there might be problems with stability or with realistic representation of the electrophysiological
response. Once anomalous points have been identified, comparison with experiment can help pinpoint
which currents might be inaccurately or incompletely formulated, leading to further improvement of
the model and an extension of its range of validity.

2. Materials and method

We use the Bernus human ventricular epicardial cell model [7] and the Fox canine ventricular cell
model [24] to compute the total ionic current through the cell membrane at a given time. These models
are not the most complex cardiac models, but do have several currents that have been added to or
modified from earlier models without examining the interactions with existing currents. All currents
in both models are Hodgkin-Huxley type currents controlled by gating variables. The simplicity of
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the models allows for faster numerical computation and avoids the computational instability seen in
more complex models [88], particularly when model parameters are varied [47]. We also use the Fox
model since this model exhibits steady-state alternans [24], a precursor to more complex arrhythmias
[53, 69, 76, 81]. Using two models that exhibit different dynamics allows us to assess whether our
results are model-dependent.

The Bernus model has 9 different ionic currents that include a rapid sodium current INa, a slow
calcium current ICa, a transient outward current Ito, a delayed rectifier potassium current IK , an inward
rectifier potassium current IK1, background sodium and calcium currents INa,b, ICa,b, a
sodium-potassium pump INaK , and a sodium-calcium exchanger INaCa. The Fox model includes 13
ionic currents. In addition to the currents present in the Bernus model, it has a plateau potassium
current IK p, a potassium current through calcium channel ICaK and a sarcolemmal pump current IpCa.
Also, the delayed rectifier potassium current IK includes a rapid component IKr and a slow component
IKs.

The cell membrane potential V in both models follows an ordinary differential equation,

Cm
dV
dt

= −Iion + Istim, (2.1)

where Istim is an external stimulus current, Cm is the cell membrane capacitance per unit surface area
and Iion is the sum of all the membrane currents.

Our implementation of both models uses the Odeint function from SciPy (open source Python
library) to solve the system of ordinary differential equation. Odeint dynamically switches from the
Adams method to the backward differentiation (BDF) method as needed with a tolerance of 1.5×10−8.
We use the same values for the various parameters as in the original derivation of the models [7, 24],
except as noted below.

2.1. Pacing protocols

We study the effect of the sodium, potassium or calcium ionic currents by multiplying the
corresponding conductance by (1 − ε), where ε, which ranges from 0 to 1, is the relative decrease of
the current. Specifically, we apply ε to INa and ICa in both models. While for potassium currents, we
apply ε to IK in the Bernus model and IKs in the Fox model. While this type of systematic variation
can be used on any parameter, we choose to vary conductances since there is some limited
experimental data where specific currents have been reduced or blocked [8, 26, 27, 38].

For the Bernus model, action potentials are produced with an external stimulus current of
19.6 pA/pF of 2 ms duration. For the Fox model, action potentials are produced with an external
stimulus current of 80.0 pA/pF of 1 ms duration. Action potential durations (APDs) for both models
are measured using a threshold membrane potential corresponding to 90% repolarization.

Since we are interested in studying how different drugs alter cardiac cell dynamics, we generate
bifurcation diagrams for a variety of changes in conductance. Bifurcation diagrams show the
relationship between APD and basic cycle length (BCL) [32], which is the time interval between
consecutive stimuli. The diagram is obtained by recording APD for different values of BCL, first with
BCL decreasing (BCL downsweep) to a certain fixed value and then increasing the BCL (BCL
upsweep) from its lowest value to its original value. For the Bernus model, we begin at a BCL of
400 ms and step down to a BCL of 200 ms with a step size of 1 ms, then return to our original BCL
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using the same step size. We recorded 20 APD for each BCL. Note that the Bernus model reaches
steady-state within two or three stimuli. For the Fox model, we begin at a BCL of 300 ms and step
down to a BCL of 90 ms with a step size of 1 ms, then return to our original BCL using the same step
size. For the Fox model, we pace for 40 stimuli and then record the next 20 APD as the Fox model
requires at least 30 stimuli to attain the steady state.

Finally, we examine the effect of reducing currents on restitution properties of the cells. Restitution
curves are relationships between the APD and diastolic interval (DI), which is the time between the
end of one action potential and the beginning of the next. Several different restitution curves have been
defined [42] based on different pacing protocols, and the resulting curves are thought to be related to
the stability of the 1:1 cardiac response [43]. Here we examine the two most commonly measured
restitution curves, the dynamic restitution curve (DRC) and the S1S2 restitution curve (SRC). The
DRC consists of the steady-state values of APD and previous DI, while the SRC consists of the APD
response to a perturbation in DI from steady-state values. We simulate the DRC by pacing for 20
stimuli in the Bernus model and for 40 stimuli in the Fox model to reach steady state. The last APD
and preceding DI are recorded and used as one point of the DRC. The BCL is decreased and the
procedure is repeated until we no longer see a 1:1 response. The SRC is generated by pacing for 20
stimuli at a BCL of 600 ms in the Bernus model and 40 stimuli at a BCL of 400 ms in the Fox model.
A single stimulus of a different BCL is given and the resulting DI and APD are recorded as part of the
SRC. The procedure is repeated using the same base BCL, but different BCLs for the perturbation.

3. Results

3.1. Changes in the action potential

A basic element of cardiac electrophysiology is the action potential, so we first use our methodology
to contrast and compare the effects of different currents on the action potential. Initial conditions from
the original derivations of the models are used to initiate the simulation which is allowed to run for
100 ms to ensure that the model is at the resting membrane potential. A single stimulus pulse is then
applied to either model, and we look at changes to the subsequent action potential as ε varies. The
results are shown in Figure 1. Both models show similar responses for all three currents. When the
sodium current decreases (Figure 1, A & D), the models predict that the APD does not change for
most ε. For the Bernus model, the action potential loses its spike and the AP disappears at high ε,
while for the Fox model, the action potential is substantially reduced at high ε, but does not completely
disappear. For a reduction in potassium current (Figure 1, B & E), the models predict that the APD
increases with increase in ε. The Fox model suggests that changes in the potassium current also alter
the resting potential, although we do not see a similar effect in the Bernus model. In the case of calcium
current (Figure 1, C & F), the models predict that the action potential duration decreases with increase
in efficacy. The effect of reduction in calcium current is to shorten the duration of the plateau phase
of the action potential. Even when the calcium channel is completely blocked, there is still an action
potential, although it does not have a plateau.

Each of the three currents under study has a distinct effect on APD. These findings are summarized
in Figure 1 G & H, where we have plotted the action potential duration as a function of ε. These
summarizing figures allow us to clearly contrast the effects of the currents over their full range of
effect. Reduction in sodium current has no effect on APD until ε ∼ 0.94 for both models. For slightly
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higher values of ε, the APD increases slightly before the action potential is completely blocked in the
Bernus model. However, in the Fox model, the APD still exists as the action potential is not completely
blocked. Reduction in the potassium current causes a rapid increase in the APD as ε increases, while
reduction in the calcium current causes a slower decrease in the APD as ε increases in both models.
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Figure 1. Effect of decreasing Na, K and Ca currents on action potentials of the Bernus
(top row) and the Fox model (center row). (A & D) For Na current, APD remains almost
constant for a wide range of ε, markedly decreasing at high values. (B & E) For K current,
APD increases with ε, preventing the transmembrane voltage from returning to the rest state
when ε exceeds ∼0.6. (C & F) Decrease in the Ca current decreases the APD by decreasing
the plateau phase. Arrows indicate the trend in the direction of decreasing current. The three
currents have very different effects on APD, as shown in the summary diagrams for (G) the
Bernus model and (H) the Fox model, with reductions in Na current (black line) showing
little effect, reductions in K current (red line) causing increase in APD, and reductions in Ca
current (blue line) causing almost linear decrease in APD.

3.2. Rate-dependent changes

Action potentials change as the pacing rate changes and interactions between currents can change
as gates do not have time to open or close completely. We examined the rate dependence of APD as
various currents were changed by pacing at a variety of BCLs until a steady-state response was reached.
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We constrained our study to 1:1 responses and for this range of BCLs, the Bernus model reached a
steady-state APD within two or three action potentials, as can be seen in the bifurcation diagrams
presented later, whereas the Fox model reached a steady state after about 30 action potentials [22]. The
last action potential was used to calculate the APD for each BCL. The lengthening or shortening of
APD, APDDiff is calculated by taking the difference between APD without changes in the currents and
APD with one of the currents reduced.
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Figure 2. Changes in the APD, APDDiff induced by reduction in Na, K and Ca currents for
the Bernus (top row) and Fox model (center row). (A & D) There is little change in APDDiff

by reduction in Na current at any pacing rate. (B & E) APD is lengthened by reduction
in potassium current with greater changes at longer BCLs. (C & F) APD is shortened by
reduction in calcium current with greater changes at longer BCLs. Arrows indicate the trend
in the direction of decreasing current. The rate of change of the drug-induced APDDiff with
BCL is plotted as a function of ε for the three currents for (G) the Bernus model and (H) the
Fox model. There is little change in the slope for changes in Na current (black line). For K
current (red line), the slope grows with increase in the ε. For Ca current (blue line), the slope
decreases linearly at slower rate and then decreases at higher rates with increase in ε.

Figure 2 shows the lengthening or shortening of APD as a function of the BCL for several values of
ε for the Bernus and the Fox models, respectively. For sodium current (Figure 2 A & D), our models
predict that there is no appreciable change in APD at different BCLs in the Bernus model, no matter
how much sodium current is reduced. This is consistent with the single AP results which indicate that

AIMS Mathematics Volume 5, Issue 1, 140–157.



146

changes in sodium current cause little change in the APD (Figure 1 A & D). However, we notice a slight
increase of APDDiff with increase in ε in the Fox model at lower BCLs. Potassium current increases
the APD (Figure 1 B & E), so we expect a positive APDDiff as seen in (Figure 2 B & E). Here, both
models predict that there is a larger effect on APD when potassium current is reduced as BCL increases.
APDDiff is somewhat higher in the Fox model as compared to the Bernus model, suggesting that the
changes in potassium current have a larger effect in the Fox model. Calcium current decreases the
APD (Figure 1 C & F), so we have a negative APDDiff (Figure 2 C & F). Again, the models predict an
increased effect at longer BCLs in both models.

We summarize the changes in rate-dependent behavior by calculating the slope of APDDiff vs. BCL
curves (Figure 2 G & H). While the curves are not all linear, as a simple approximation of the rate-
dependent changes, we fit a line to the curve to calculate the slope. Interestingly, the general pattern
here is the same as for changes in APD — blocking sodium channels has almost no effect on the slope;
blocking potassium channels causes a rapid increase in the slope; and blocking calcium channels causes
a more gradual decrease in the slope. Thus blocking potassium channels results in larger rate-dependent
effects than changes in other currents.

3.3. Changes in the bifurcation diagram

Bifurcation diagrams provide a detailed picture of the electrophysiological response of cardiac cells
by recording APD at various BCLs. The bifurcation diagram for the Bernus model in the absence of
any changes is shown in Figure 3 (left). During the downsweep (right to left) the APD decreases but
remains in a 1:1 pattern until a BCL of 275 ms when the cell reaches a point at which it cannot recover
fast enough to respond to every stimulus. There is an abrupt increase in the APD as the cell transitions
to the 2:1 response and remains in the same pattern until the BCL decreases to 200 ms. As we begin
the upsweep (left to right), the cell remains on the 2:1 branch until BCL=333 ms after which the cell
makes an abrupt transition back to 1:1 behavior. The bifurcation diagram for the Fox model is shown in
Figure 3 (right). As BCL is decreased it remains in a 1:1 pattern until the BCL reaches 200 ms. At this
BCL, alternans occur showing the bifurcation from a 1:1 to a 2:2 response. The cell continues with 2:2
behavior until the BCL reaches 150 ms. The cell returns to 1:1 again and maintains this pattern until
the BCL reaches 95 ms when there is an abrupt increase in the APD as the cell transitions to the 2:1
response and remains in the same pattern until the BCL decreases to 90 ms. In the Fox model, there
is little difference in behavior when increasing or decreasing BCL, so we do not observe a hysteresis
window in this model.

Bifurcation diagrams were generated and examined for a variety of values of ε for each of the
currents for both models. We adjust the different ranges of BCLs for some values of ε in order to
see the transitions as APD gets lengthened or shortened with changes in ε. The results for the Bernus
model are shown in Figure 4. No matter which current is altered, we find that there is a transition
from a 1:1 to a 2:1 pattern and that there is a hysteresis window associated with this transition. For
sodium current, we can see hysteresis up to an efficacy of 0.95, after which we do not see hysteresis
since the action potential vanishes. For potassium current, ε is limited to 0.6 as higher values lead
to very large APDs exceeding the BCL. When potassium is altered, we see an alternating rhythm
appear between BCL≈300–400 ms and move towards longer BCL≈525 ms as ε increases. Note that
the usual definition of alternans is two different responses for every two stimuli, but here we observe
two different responses for every four stimuli. For calcium current, the transitions shift to lower BCLs
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due to shortening of the APD.
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Figure 3. Bifurcation diagram for the Bernus model (left) and the Fox model (right) in the
absence of any drug effect. The red triangles correspond to APD during BCL downsweep
(right to left) and the black diamonds correspond to APD during BCL upsweep (left to right).
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Figure 4. The effect of reductions in current on rate-dependent behavior in the Bernus
model. We show the bifurcation diagrams in the presence of various values of ε for Na
current (top row), K current (center row) and Ca current (bottom row).

Bifurcation diagrams for the Fox model are shown in Figure 5. Compared to the Bernus model,
we can see a completely different picture in this model. Reduction in sodium current shifts the APD
alternans bubble at lower and intermediate values of ε and causes the alternans to vanish when applied
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at high values of ε. With reduction in potassium current, APD alternans exist only at low values of ε,
while higher values of ε cause response patterns not seen in the untreated model. Bifurcation diagrams
for reduced calcium current are quite different compared to the two other currents; even at low values
of ε, reducing calcium current causes the alternans and other transitions to disappear, leaving a 1:1
response at all BCLs.
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Figure 5. The effect of current reduction on rate-dependent behavior in the Fox model. We
show the bifurcation diagrams in the presence of various values of ε for Na current (top row),
K current (center row) and Ca current (bottom row).

The hysteresis window has been linked to arrhythmogenesis in both modeling [36, 59, 91] and
experimental [58] studies. We can study how the hysteresis window changes as we reduce different
currents by defining BCLdown as the BCL at which we see a transition from 1:1 to 2:1 and BCLup as
the BCL at which we see a transition from 2:1 to 1:1. These transition BCLs are plotted as a function
of ε and the results are shown in Figure 6. The change in the width of the hysteresis window will only
be studied for the Bernus model as there is no significant hysteresis window in the Fox model. For
sodium current, the transitions, both up and down, take place at almost the same BCLs for a wide
range of ε, only increasing slightly once ε surpasses ∼0.9. For potassium current, the transitions, both
up and down, occur at longer BCLs as ε increases. This is a direct consequence of the increase in
APD as ε increases. BCLup increases smoothly, but BCLdown exhibits a sharp discontinuity near
ε ≈ 0.4, leading to a decrease in the size of the hysteresis window at higher values of ε. For calcium
current, the transitions both occur at shorter BCLs as ε increases. BCLup appears to decrease more
rapidly than BCLdown causing a decrease in the size of the hysteresis window as ε increases with a
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complete disappearance of the window once ε > 0.88.
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Figure 6. The effect of current reduction on the hysteresis window. For each of the currents,
we plot the BCL at which the dynamics transition from 1:1 to 2:1 behavior (BCLdown) and the
BCL at which the dynamics return from 2:1 to 1:1 behavior (BCLup). (left) For Na current,
the size of the hysteresis window (difference between BCLup and BCLdown) remains constant
for almost the entire range of ε. (center) For K current, the transitions, both up and down,
occur at longer BCLs as ε increases. (right) For Ca current, the transitions both occur at
shorter BCLs as ε increases.

3.4. Restitution

Restitution curves are theoretically linked to the stability of the 1:1 response [85] and provide a
measure of the cell’s response to changes in pacing rate. We simulate the DRC and SRC in both
models at different values of ε and determine the maximum slope. Figure 7 shows the maximum slope
of the DRC (top row) and the SRC (bottom row) for the Bernus model (left column) and the Fox model
(right column).
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Figure 7. The effect of current reduction on restitution curves. For each of the currents, we
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Reducing the sodium current does little to change the maximum slope of either the DRC or the SRC
in the Bernus model until a large reduction in current. Near a reduction of 95%, the RCs get steeper
before the blockage of sodium current results in a loss of AP. Blocking the potassium current results
in steepening of both the DRC and SRC in the Bernus model. The calcium current shows slightly
different responses in the DRC and SRC when it is blocked in the Bernus model. The maximum slope
of the DRC remains the same until a roughly 40% block of calcium current. The maximum slope of
the DRC then decreases as the calcium current is further reduced. The maximum slope of the SRC
initially increases as calcium current is blocked, but then decreases as calcium current is increased
beyond ∼45%.

The slopes of the restitution curves in the Fox model respond differently than in the Bernus model
to changes in sodium, potassium, and calcium currents. The maximum slope of the DRC gradually
decreases as the sodium current is reduced until the abrupt increase at a reduction of ∼95%. The
maximum slope of the SRC, on the other hand, remains almost constant as sodium current is initially
reduced (up to ∼40%). It then gradually rises to a peak value near ε ∼ 0.6 followed by a gradual
decline until ε ∼ 0.95 when it declines more rapidly. A reduction in potassium current in the Fox
model results in an initial decline in the maximum slope of the DRC (until ε ∼ 0.1), followed by
an increase (until ε ∼ 0.4) and a rapid decline thereafter. The maximum slope of the SRC initially
increases (until ε ∼ 0.2) followed by a more rapid reduction in the slope of the SRC. Reduction of
the calcium current initially causes a slight increase in the maximum slope of the DRC, followed by a
gradual decrease. The maximum slope of the SRC does not show a similar initial increase as calcium
current is reduced, but simply decreases as calcium current is reduced.

4. Discussion

In the present study, we used mathematical models of cardiac cells to systematically study the effect
of changing ionic conductances. Our study revealed several features that are not likely to be found
by examining populations of models or doing a sensitivity analysis. These features include the slight
increase in APD just before total block of the sodium current in the Bernus model, the change in slope
of rate-dependence as calcium conductance is decreased, the discontinuity in BCLup as potassium
conductance is decreased in the Bernus model, or the differences between maximum slopes of DRC
and SRC in the Fox model. Whether these features are characteristics of these particular models or
whether they are a general feature of cardiac systems, and if so, whether they are clinically relevant,
are questions that need to be addressed in future work.

Since our study examines reduction in current, it is possible to compare our results to experiment
through the use of antiarrhythmic drugs [75]. While not always exclusive, there are drugs that block
sodium channels, potassium channels, or calcium channels. Experiments involving sodium channel
blockers have shown a variety of effects, both lengthening [1, 27, 77, 82, 92] and shortening [1, 11, 57,
92, 93] of APD. Our results are consistent with the few studies that have observed no change in APD
with the application of sodium channel blockers [21,25,61] and also agree with observations of no rate
dependence with sodium channel blockers [3, 5]. Most studies find that potassium channel blockers
lengthen APD [2,6,27,28,41,45,72,74,84,87,89] and calcium channel blockers shorten APD [15,27,
57], as predicted by our models, but there are experiments that have observed other effects [23,27,45].
Our model predictions are also in agreement with the majority of experiments that observed increased
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changes in APD as BCL decreases in potassium channel blockers [3, 4, 6, 15, 28, 41, 50, 72, 74, 84, 89].
The mixed results of some of these studies could be due to differences in how antiarrhythmics affect
different types of cells [1, 3, 5, 27, 45, 48, 68, 82] or they could be a consequence of the fact that most
channel blockers do not simply block one channel leaving others unaffected, but rather affect multiple
ion channels [18, 37, 44, 49, 75, 83]. The role of both of these can be addressed through a combination
of modeling and further experiment.

Experiments have also measured the slope of restitution curves in the presence or absence of
antiarrhythmic drugs. Some experiments using sodium channel blockers observed a flattening of the
dynamic restitution curve with the addition of drug [39, 71], although another experiment noted an
increase in the slope of the DRC [63]. Potassium channel blockers have also been observed to lower
the slope of the DRC [40, 60, 65], but also to increase the steepness of the DRC in another study [62].
Calcium channel blockers were observed to decrease the slope of the SRC [66]. Note that these
studies only examined the slope of one restitution curve, but both models examined here predict
different behaviours as current is reduced for different RCs. One recent study examined the effect of
sodium channel blockers and potassium channel blockers on both the DRC and the SRC finding that
potassium channel blockers markedly increased the slope of the DRC, but had a much smaller effect
on the SRC, and that sodium channel blockers had no effect on the slope of the DRC, but reduced the
slope of the SRC [64]. While this experiment finds that slopes of the different RCs respond differently
to reduction in current, the details of these changes do not match those predicted by our models.
Another drawback to the experimental studies is the limited number of doses used in the experiments.
Our models predict that some of the restitution curve slopes show increasing and decreasing regions
as current is reduced — experiments using more doses might be able to confirm or invalidate these
predictions.

This type of study can be helpful in discerning whether observed model behavior is due to model
structure or the choice of model parameters. Model structure is the choice of functions and equations
used to represent various biological processes. Model structure for cardiac models is often driven by
experimental measurements of different currents and typically arises from functional differences in
different types of cells (atrial vs. ventricular) or from cells of different species. A large number of
computational cardiac cell models now exist to model a variety of cardiac cells from different species
[16, 17]. We used two such models, finding rather good agreement of the effect of changes in current
on APD and rate-dependence. This suggests a commonality in the structure of these models that
leads to the same outcome. However, the two models examined here showed differences in maximum
slopes of RCs as currents were blocked. A systematic study like this highlights the commonalities
and differences between models that could help us understand what kind of equations lead to certain
behaviors.

5. Conclusion

This study represents one tool in the effort to develop a mathematical model accurate enough to
correctly predict the effect of a new drug [14, 90]. Note that the Fox and Bernus models in some cases
make very different predictions about some dynamics as various currents are blocked. By comparing
these to experiment, we can determine which model more accurately predicts experimental
observations and perhaps identify which features of current equations produce the correct behaviour.
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This will help us improve the accuracy of models over a broader range of parameter values, an
important consideration when trying to use models for simulation of antiarrhythmics. Once we know
that a model can accurately predict behaviour over a range of parameters, it can be used to assess the
proarrhythmic potential of a drug before it is tested in patients [51, 73] and can be used to help
optimize treatment regimens. A systematic assessment of model parameters, coupled with
experimental confirmation when possible, will help develop more accurate models that can be used
for personalized medicine.
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