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A B S T R A C T

Illness negatively affects all aspects of life and one major cause of illness is viral infections. Some viral infections
can last for weeks; others, like influenza (the flu), can resolve quickly. During infections, uninfected cells can
replicate in order to replenish the cells that have died due to the virus. Many viral models, especially those for
short-lived infections like influenza, tend to ignore cellular regeneration since many think that uncomplicated
influenza resolves much faster than cells regenerate. This research accounts for cellular regeneration, using an
agent-based framework, and varies the regeneration rate in order to understand how cell regeneration affects
viral infection dynamics under assumptions of different modes of transmission. We find that although the
general trends in peak viral load, time of viral peak, and chronic viral load as regeneration rate changes are
the same for cell-free or cell-to-cell transmission, the changes are more extreme for cell-to-cell transmission
due to limited access of infected cells to newly generated cells.
1. Introduction

Viruses have the ability to infect a broad range of hosts, both plant
and animal (Simmonds et al., 2019). The resulting infections generate
a wide variety of outcomes, with some infections leading to serious
illness or even death in the host, and other infections causing no harm
at all to the host (Casadevall and Pirofski, 2018). The time scale of viral
infections can also vary widely, ranging from acute infections lasting
a few days to chronic infections that last until the host dies of other
causes (Sagi and Assaf, 2019).

In the last few decades, mathematical models have been developed
to try to capture the varied dynamics of viral infections. While math-
ematical modeling studies have focused primarily on viral infections
causing serious human diseases, such as HIV (Perelson et al., 1997),
hepatitis B & C (Li and Zu, 2019; Dixit and Perelson, 2006), in-
fluenza (Baccam et al., 2006), and SARS-CoV-2 (Hernandez-Vargas and
Velasco-Hernandez, 2020), they have also been applied to plant (Phan
et al., 2021) and animal infections (Howey et al., 2012). These models
range in complexity, with some capturing only the most basic virus–
host interactions and others attempting to incorporate host responses
such as innate and adaptive immune responses (Zitzmann and Kaderali,
2018; Murillo et al., 2013).

There is one consistent, clear division, however, between models for
acute infections and models for chronic infections — chronic infection
models include cell regeneration, while acute infection models neglect
this biological reality. The argument for neglecting cell regeneration in
acute infections is that the infection is over before a significant number
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of new target cells appear. The duration of an infection is determined
by a number of factors, such as how quickly the virus fuses and enters
the cell (Haywood and Boyer, 1986; Mendoza et al., 2020), how quickly
it replicates within the cell (Lanahan et al., 2021), how easily it moves
between cells (Yang et al., 2014), and the strength of the host immune
response (Go et al., 2014, 2019). So while it might be reasonable to
neglect cell regeneration for a particular infection in one person, the
infection might last long enough in another person to warrant inclusion
of cell regeneration for accurate modeling.

In particular, the mode of transmission of the virus could alter
the importance of cell regeneration. Recent experimental work has
shown that in addition to cell-free transmission, where viruses leave
one cell and travel in the extracellular medium to another, viruses
are capable of tunneling directly from one cell to another (known as
cell-to-cell transmission) (Mothes et al., 2010). Cell regeneration might
need to be faster in order to play a role in cell-to-cell transmission
dominated infections since new target cells that appear far from the
active site of infection are not accessible without cell-free transmission.
Mathematical models have started examining the consequences of cell-
to-cell transmission (Kumberger et al., 2018; Durso-Cain et al., 2021;
Allen and Schwartz, 2015), but have not yet examined how cell re-
generation affects viral dynamics for infections using this form of viral
transmission.

Modeling studies have previously examined how cell regeneration
alters viral dynamics under the assumption of cell-free transmission.
Inclusion of cell regeneration in mathematical models is required to
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Fig. 1. Visualization of infection spread in the ABM. Each hexagon represents a single cell with color denoting the state of the cell: uninfected (green), eclipse (yellow), infected
(red), dead (black).
produce chronic infections, but depending on how it is incorporated
into the model does not necessarily lead to chronic infections (Pinky
and Dobrovolny, 2017) or can lead to oscillatory viral loads (Eiken-
berry et al., 2009; Hews et al., 2010). If cell regeneration results in
chronic viral infection, the chronic viral load is dependent on the
cell regeneration rate (Itakura et al., 2010; Eikenberry et al., 2009;
Pinky et al., 2019). Moreover, mathematical modeling has determined
that cell regeneration is required, but not sufficient for maintaining
chronic viral coinfections (Pinky and Dobrovolny, 2017; Pinky et al.,
2019). Finally, cell regeneration can affect treatment options since it
is required for intermittent antiviral treatment to work and the rate
of cell regeneration alters the optimal cycling parameters (Deecke and
Dobrovolny, 2018). These studies make it clear that incorporating cell
regeneration into standard viral kinetics models that assume cell-free
transmission alters the predicted viral dynamics in clinically important
ways.

This research examines the role of cellular regeneration, using a hy-
brid agent-based model (ABM) and a partial differential equation model
(PDM), and varies the regeneration rate in order to understand how cell
regeneration affects viral infections. The model used represents how
viral infections spread in a two-dimensional layer of cells in order to
generate total virus over time graphs for corresponding regeneration
rates that can be used to examine how cellular regeneration affects the
viral time course in both cell-free and cell-to-cell transmission modes.

2. Model and methods

2.1. Agent-based model

We constructed a hybrid agent based model (ABM) and partial
differential equation model (PDM) to simulate the spread of the in-
fluenza virus between cells. The base model, which does not account
for cellular regeneration, is fully described in Fain and Dobrovolny
(2022). The ABM represents each cell individually in a two-dimensional
hexagonal grid. The nature of the model allows us to observe the
collective behavior of all the cells and graph various properties of the
2

overall simulation such as how many cells have died over time, how
many cells have been regenerated, and how many virions are present
at any given time.

A visualization of the spatial structure of the ABM model is shown
in Fig. 1. As seen in the figure, each cell can be in one of four distinct
states ranging from uninfected to dead as follows:

1. Uninfected (green) - The cell contains no virus.
2. Eclipse (yellow) - The cell is infected but is not producing virus.
3. Infected (red) - The cell is releasing virus.
4. Dead (black) - The cell is no longer releasing any virus and is

not susceptible to infection.

2.2. Viral infection

We consider two types of viral transmission: cell-free transmission,
where virus is released from cells and diffuses to infect other cells; and
cell-to-cell transmission, where an infected cell can pass virus directly
to an uninfected neighbor. For cell-free transmission, infection of a
cell is determined by the amount of virus directly above the cell. The
probability per unit time of transitioning from uninfected to eclipse is
given by 𝑃𝑐𝑓 = 1− exp(−𝛽𝑉 ), where 𝛽 is the infection rate and 𝑉 is the
amount of virus directly above the cell. For cell-to-cell transmission,
the probability per unit time of an infected cell causing infection of
a neighboring uninfected cell is given by 𝑃𝑐2𝑐 where 𝑃𝑐2𝑐 < 1. If an
uninfected cell has more than one infected neighbor, each neighbor
has a probability of 𝑃𝑐2𝑐 of infecting that cell, so the uninfected cell
has a probability of infection of 1 − (1 − 𝑃𝑐2𝑐 )𝑛, where 𝑛 is the number
of infected neighbors.

The movement of virus over the cells is described by a partial
differential equation model,
𝜕𝑉 (𝑥, 𝑦, 𝑡)

𝜕𝑡
= 𝐷∇2𝑉 (𝑥, 𝑦, 𝑡) + 𝑝 − 𝑐𝑉 (𝑥, 𝑦, 𝑡),

where 𝑉 (𝑥, 𝑦, 𝑡) is the amount of virus over the cells, 𝐷 is the diffusion
coefficient, 𝑝 is the viral production rate, and 𝑐 is the viral clearance
rate. The partial differential equation is solved computationally using
the forward Euler method with Neumann boundary conditions.
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Fig. 2. Mean transition times describing cell phases from uninfected to dead for a model that does not account for cell regeneration (right), and a model that includes the
information necessary to account for regeneration (left).
2.3. Cellular regeneration

This manuscript describes an extension of the original model that
incorporates cellular regeneration. It is estimated that epithelial cells in
the respiratory tract begin proliferating 1 − 3 d after injury in hamsters
and guinea pigs (Keenan et al., 1983; Erjefalt et al., 1995) to recover
from death or injury, although at least one respiratory infection has
been shown to delay this response (Linfield et al., 2021). Thus, we
examine a range of possible regeneration rates from 0.030 − 10.000 ∕d.
In the ABM, after a cell has died, its location in the grid of cells is
replaced by a new uninfected cell via mitosis occurring in a neigh-
boring uninfected cell. The probability of a cell being regenerated
is determined according to an exponential distribution with a mean
regeneration rate 𝑟. A cell at a specific location in the grid may
only undergo regeneration if it is adjacent to a uninfected cell. This
essentially mimics division of the living cell into empty locations in
the grid of cells. The mean regeneration rate is the same regardless of
how many uninfected neighbors surround a particular cell.

Transitions between states for each cell are shown in Fig. 2. On
the right side of Fig. 2, the base simulation model is shown, which
does not include cellular regeneration; on the left side, regeneration
and the amount of time dead are taken into account — regeneration
of a cell in a spot on the grid has the same effect as another cell
reproducing into that space on the grid. The times used to transition
from eclipse to infectious and from infectious to dead are pulled from
Erlang distributions with means 𝜏𝐸 or 𝜏𝐼 and number of stages 𝑛𝐸 or
𝑛𝐼 respectively. Erlang distributions are used since previous studies
have indicated this distribution provides the best fit for these transi-
tions (Beauchemin et al., 2017; Kakizoe et al., 2015). The time used to
determine if cellular regeneration should take place is pulled from an
exponential distribution.

2.4. Parameters

Parameters are chosen to model influenza infections. The viral infec-
tion parameters (𝛽, 𝑝, 𝑐, 𝜏𝐼 and 𝜏𝐸) are taken from a fit of this model to
in vitro viral titer curves of 2009 pandemic H1N1 influenza (Fain and
Dobrovolny, 2022) taken from Pinilla et al. (2012). The diffusion coeffi-
cient is calculated using the Stokes–Einstein equation (as in Quirouette
et al., 2020). The number of stages in the Erlang distributions for
eclipse-infectious and infectious-dead transitions are taken from Pinilla
et al. (2012). Parameter values are given in Table 1.
3

2.5. Simulations

The following information is recorded every hour: number of cells
in each phase (uninfected, eclipse, infected, dead) and the total viri-
ons present in the dish. Since it is difficult to compare entire time
courses, we measure specific aspects of the viral titer time course to
easily compare dynamics during cell-to-cell or cell-free transmission.
We measure the peak viral load, the time of peak viral load, and the
chronic viral load. The peak viral load and chronic load are indicative
of the severity of the infection while the time of peak reflects how
quickly the infection takes hold. Quantities are plotted as functions
of regeneration rate to assess how cell regeneration affects infections
transmitted either cell-to-cell or cell-free. A link to code is available on
GitHub at athaun/cell-regen-influenza-model.

3. Results

We use the ABM/PDM model to run 100 simulations at different
regeneration rates assuming either direct cell-to-cell transmission or
cell-free transmission. Images of the infection at several time points for
each of the transmission modes are shown in Fig. 3. We show both the
entire simulated well (left two columns) and a zoomed in region (right
two columns). The majority of cells are initially in the uninfected state
(green) with a few cells initially in the eclipse phase (cyan). As the
infection proceeds, the eclipse cells move to the infected state (red)
and eventually die (black). We see that cell-free transmission (right
columns) spreads the infection faster than cell-to-cell transmission (left
columns) since virus can move away from the originating cell to infect
non-adjacent cells — even after 24 h, we can see that cell-free infection
has reached all corners of the well and resulted in most cells moving
into the eclipse state. In the next sections, we use the total viral load
to examine changes in features of the viral load as described in the
Methods.

3.1. Peak viral titer

The mean peak viral load as a function of regeneration rate is
shown in Fig. 4 for cell-to-cell transmission (black) and cell-free (red)
transmission. As the regeneration rate increases, the peak viral load also
increases, especially for the cell-to-cell transmission, although there is a
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Table 1
Influenza parameters used in the simulation.

Parameter Description Value

MOI Multiplicity of Infection 10−2

𝛽 Infection rate 54 virions−1 h−1

𝑝 Virus production rate 3000 virions cells−1 h−1

𝐷 Diffusion coefficient 2.2 × 10−8 m2 h
𝑐 Clearance rate (rate of viral decay) 0.25 h−2

𝛥𝑥 Cell size 25 × 10−6 m
𝛥𝑡 Base time step 2𝛥𝑥
𝜏𝐼 Average time for infectious stage 26.0 h
𝜏𝐸 Average time for eclipse stage 16.0 h
𝑛𝐸 Number of stages in Erlang distribution 30.0
𝑛𝐼 Number of stages in Erlang distribution 100.0
𝑃𝑐2𝑐 Probability that virus will spread via

direct cell-to-cell infection per hour.
0.2 h
Fig. 3. Simulated influenza infection via cell-to-cell transmission only (left column) or cell-free transmission only (right column). We show the entire simulated well in the left two
columns and a zoomed in region in the right two columns. Snapshots are taken at day 0 (top row), day 1 (second row), day 3 (third row), and day 4 (bottom row). Uninfected
cells are green; cells in the eclipse phase are cyan; infected cells are red; and dead cells are black. Simulations are run with the parameters given in Table 1.
slight increase in the peak viral load of cell-free transmission at a regen-
eration rate of ∼ 2–3 ∕d. As the regeneration rate increases, more cells
are susceptible to infection, some possibly early enough to contribute
to increasing peak viral load when the regeneration rate is fast enough.
Note, however, that the changes in peak viral load measured here are
all within one log, so might not be experimentally measurable, given
the typical error associated with viral load measurements (LaBarre and
Lowy, 2001).

We also notice that cell-to-cell transmission always results in a lower
peak viral load than cell-free transmission. This is because cell-to-cell
transmission overall infects fewer cells than cell-free infection — note
4

that viral production rate is the same for both modes of transmission. In
the case of cell-free transmission, if a newly generated cell happens to
appear far away from the site of active infection, it can still become
infected because of viral diffusion over the entire dish. However, if
only cell-to-cell transmission occurs, this newly generated cell will only
become infected if there is a bridge of uninfected cells connecting this
cell to the site of infection, or if such a bridge forms at some later time.
Creating these direct links becomes more difficult as the regeneration
rate is lowered since the site of active infection moves further away
from the region where cell regeneration is likely to occur, so we see
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Fig. 4. Peak viral load dependence on cellular regeneration rate for cell-to-cell
transmission (black) and cell-free transmission (red).

Fig. 5. Time of viral peak dependence on regeneration rate for cell-to-cell transmission
(black) and cell-free transmission (red). Error bars are the standard deviation of 100
runs.

a larger divergence in the peak viral load between cell-to-cell and
cell-free transmission at lower regeneration.

3.2. Time of viral peak

While the peak viral load can give a measure of the severity of the
infection, the time of viral peak indicates how quickly the infection
has spread. The time of viral peak is shown as a function of regen-
eration rate for both cell-to-cell and cell-free transmission in Fig. 5.
In both cell-to-cell and cell-free transmission, the time of peak stays
relatively steady at low regeneration rates until the regeneration rate
is increased to above ∼1.7 − 2.0 ∕d for cell-free transmission and ∼0.8 ∕d
for cell-to-cell transmission, where it spikes up and plateaus for both.

We again note some differences between cell-to-cell and cell-free
transmission. At all regeneration rates, the time of viral peak occurs
later when there is only cell-to-cell transmission. Cell-to-cell transmis-
sion generally takes longer to infect a given number of cells since the
infection can only be passed to nearest neighbors, so it takes longer to
reach the peak viral load. We also see that for cell-free transmission,
the time of peak is quite consistent (small standard deviations), how-
ever for the cell-to-cell transmission model, the time of peak ranges
approximately ±2 days at higher cell regeneration rates. Stochasticity
is partially removed in cell-free transmission since the virus diffuses
5

over the surface of the cells and can skip over regions of dead cells
Fig. 6. Chronic viral load dependence on regeneration rate for cell-to-cell transmission
(black) and cell-free transmission (red). Error bars are the standard deviation of 100
runs.

to continuously infect cells. During cell-to-cell transmission, a virus’
ability to spread consistently might be hindered by the exact spatial
distribution of infected cells and dead cells leading to more variation
in the time of viral peak.

3.3. Chronic viral load

With cell regeneration providing a consistent supply of new cells,
our model predicts chronic infections. The severity of chronic infections
can be assessed by measuring the chronic viral load. The chronic viral
load is shown in Fig. 6 for different regeneration rates for both cell-
to-cell (black line) and cell-free (red line) transmission. As the cellular
regeneration rate increases, the amount of virus present in the chronic
infection also increases. Since cells are continuously being regenerated,
there are more cells to infect compared to a model that does not account
for regeneration, allowing the infection to become chronic.

While cell-to-cell transmitted infections and cell-free transmitted
infections converge to similar viral loads at high regeneration rates,
at low regeneration rates, the chronic viral load is lower for cell-to-
cell transmitted infections. This is because new cells might appear at
locations that are not near infected cells, meaning that they are not
immediately accessible for infection. As regeneration rate increases,
this difference in chronic load for different transmission mechanisms
disappears. As the regeneration rate passes 1.0 ∕d the chronic load
begins to plateau, this is due to the dish of cells reaching capacity where
the chronic load is close to the peak viral load.

3.4. Effect of antivirals

We also used the model to examine the effect of antivirals on
the infection. The primary class of antivirals currently in use against
influenza is the neuraminidase inhibitors (NAIs). NAIs block release
of virus (Abed et al., 2002; Gubareva et al., 2000) and are typically
modeled as reducing the production rate (Dobrovolny et al., 2011;
Handel et al., 2007; Palmer et al., 2017; Cao and McCaw, 2015;
Dobrovolny and Beauchemin, 2017; Beggs and Dobrovolny, 2015). We
examined the effect of NAIs by looking at a 50% reduction in the
production rate, as well as a 98% reduction in production rate. Results
are shown in Fig. 7.

For NAIs, we see some obvious differences once the antiviral is
applied. The peak viral load and chronic viral load decrease for both
transmission modes since the production rate is lower. There is also a
slight lengthening of the time of peak viral load for the cell-free trans-
mission mode. While this shift is expected for the cell-free transmission
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ode, we do not expect to see a change in the time of peak for cell-
o-cell infection. For cell-to-cell transmission, the production rate does
ot play a role in spread of the infection, so we do not expect a change
n the underlying dynamics of the cell-to-cell infection. From ordinary
ifferential equation models, the expected effect of NAIs is to lower the
eak viral load and delay the time of peak until it reaches the threshold
or curing the infection (Beggs and Dobrovolny, 2015). The changes to
he time of peak are small until near the threshold, which is determined
y the basic reproduction number (Dobrovolny et al., 2011). The basic
eproduction number for the Pinilla data is estimated at 1700 (Pinilla
t al., 2012), so the drug efficacy required to cure the infection is
9.94%, which is quite a bit higher than the 98% drug efficacy assumed
ere and might be the reason we do not see much of a shift.

. Discussion

By examining the effect that varying rates of cellular regeneration
ave on peak viral load, time of peak virus, and chronic viral load,
t is evident that cell regeneration is an important aspect of viral
odels. Infectious models that do not account for regeneration are

y their nature short lived—this is due to the fact that in a model
hat ignores the biological reality of regeneration, potential target
ells are unrealistically discarded. While neglecting cell regeneration
ight work well for modeling acute infections in healthy patients, it

s inherently ascribing the cause of infection resolution to the wrong
echanism (Cao and McCaw, 2015). In healthy adults, acute infections

uch as influenza are thought to be resolved because of the immune
esponse rather than death of all susceptible cells (Beauchemin and
andel, 2011). Even with low regeneration rates, our model pre-
icts long-lasting infections, suggesting that the more accurate model
or acute infections includes regeneration with the infection being
6

uppressed by an immune response (Dobrovolny et al., 2013). t
For both the peak viral load and time of viral peak, we noted that
ynamics of the infection shift at regeneration rates around 1.0 − 2.0 ∕d.
nterestingly, Deecke and Dobrovolny (2018) also found an abrupt
hange in dynamics of intermittent treatment at a particular regenera-
ion rate, although the dynamical change in their system occurred at a
ower regeneration rate than we observe here. It is unclear how these
hreshold rates of regeneration are relevant for actual infections since
t is estimated that epithelial cells in the respiratory tract regenerate at
.3 − 1 ∕d, based on measurements after injury in hamsters and guinea
igs (Keenan et al., 1983; Erjefalt et al., 1995). This is above the
hreshold rate measured in Deecke and Dobrovolny (2018) and slightly
elow the threshold rate found here.

As the rate of cell regeneration increases, the severity of the infec-
ion also increases as seen by the higher peak viral load and higher
hronic viral load for faster regeneration rates. The dependence of
hronic viral load on regeneration rate has been noted in other stud-
es (Itakura et al., 2010; Eikenberry et al., 2009). One study also found
hat coinfection duration is longer at higher regeneration rates when
egeneration is included in a model of viral coinfection (Pinky and
obrovolny, 2017).

We noted some differences in how changes in cell regeneration rate
iffer based on the mode of transmission of the virus. The observed
ifferences in peak viral load, time of viral peak, and chronic viral
oad occur because cell-free transmission provides the virus access to
ll cells in the dish, whereas cell-to-cell transmission only allows the
irus to access nearest neighbors. This model examines the effect of
ell regeneration on infections that utilize either cell free and cell-
o-cell transmission individually; evidence suggests that both forms
f transmission occur at the same time during infections (Durso-Cain
t al., 2021; Blahut et al., 2021). Interestingly, both studies suggest
hat most cells are infected via cell-to-cell transmission, with cell-free
ransmission’s main role being to seed infections in new infection-free
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locations. Thus, so long as there is some cell-free transmission, the
virus should be able to access and take advantage of newly grown
cells. However, this dynamic might change in the presence of antivirals.
The two primary classes of antivirals for influenza target processes that
are only important for cell-free transmission (viral entry into the cell
and viral release from the cell). Thus treatment with antivirals will
primarily cut off the long-range transmission of virus, leaving intact
the slower cell-to-cell transmission that can potentially prolong the
infection.

It is important to acknowledge the limitations of this model. One
aspect of viral infections that this model does not take into account
is the immune response. The adaptive immune response, which in-
cludes cytotoxic 𝑇 lymphocytes (CTLs) and antibodies (Abs), limits
iral load (Nowak and Bangham, 1996), so could suppress an otherwise
hronic infection. Thus incorporating an immune response would likely
hange our chronic infections to acute infections given a sufficiently
arge immune response. We also chose a fairly low cell-to-cell trans-
ission probability when running our simulations. As this value gets

arger, cell-to-cell transmission will spread faster and the differences
e observe between the two modes of transmission will lessen. Sim-

larly, changes in the diffusion coefficient will change the speed at
hich cell-free transmission spreads the infection, with low diffusion

oefficients leading to more spatial heterogeneity even for cell-free
ransmission (Holder et al., 2011).

. Conclusion

It is apparent that cellular regeneration has an effect on viral
nfections; however, there is not a significant amount of research
eing conducted on the effects of regeneration. In particular, we found
ifferences in how cellular regeneration interplays with different types
f viral transmission, since viruses transmitting solely via cell-to-cell
ransmission might not have access to newly regenerated cells. This
spect of viral infections has an impact on viral dynamics even in short
ived infections like influenza and more research on the subject should
e undertaken.
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