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Abstract
One of the primary cancer treatment modalities is chemotherapy. Unfortunately, traditional anti-cancer drugs are often 
not selective and cause damage to healthy cells, leading to serious side effects for patients. For this reason more targeted 
therapeutics and drug delivery methods are being developed. The effectiveness of new treatments is initially determined via 
in vitro cell viability assays, which determine the IC

50
 of the drug. However, these assays are known to result in estimates 

of IC
50

 that depend on the measurement time, possibly resulting in over- or under-estimation of the IC
50

 . Here, we test the 
possibility of using cell growth curves and fitting of mathematical models to determine the IC

50
 as well as the maximum 

efficacy of a drug ( �
max

 ). We measured cell growth of MCF-7 and HeLa cells in the presence of different concentrations 
of doxorubicin and fit the data with a logistic growth model that incorporates the effect of the drug. This method leads to 
measurement time-independent estimates of IC

50
 and �

max
 , but we find that �

max
 is not identifiable. Further refinement of 

this methodology is needed to produce uniquely identifiable parameter estimates.
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Introduction

Cancer is the second leading cause of mortality worldwide 
(Bray et al. 2018). One of the primary treatment strate-
gies currently in use is chemotherapy that is often effective 
against tumors, however, can also detrimentally affect the 
healthy tissues (Miller et al. 2016). New, cancer-targeted 
approaches are continuously being developed (Tang and 
Zhao 2020; Peng et al. 2020), as are new nanotechnology-
based delivery mechanisms for existing drugs (Rejinold et al. 
2020; Khan et al. 2020). These potential new treatments 

need to be well-tested and characterized in vitro (Gurney 
2002) before being considered for use in patients.

The most common method for determining the effective-
ness of a drug is by administering different concentrations 
of the potential chemotherapeutic to cancer cells in order to 
generate a dose response curve. The dose response curve 
yields the IC50 , which is the drug concentration needed to 
achieve half the maximum effect of the drug. Although not 
often measured, the dose–response curve also yields �max , 
which is the maximum effect of the drug. Unfortunately, 
dose–response curves generated in this way can be problem-
atic. There are known sensitivities to experimental details 
(Larsson et al. 2020) that can lead to variation in measure-
ments. Measurement error is often not accounted for when 
using the dose response curve to estimate IC50 , which can 
lead to incorrect IC50 estimates (Wang et al. 2021). Addition-
ally, dose response curves also provide IC50 and �max esti-
mates that depend on the measurement time (Murphy et al. 
2020; Harris et al. 2016; Hafner et al. 2016), and are unable 
to yield the correct value of both measurements with a sin-
gle measurement time (Murphy et al. 2020). An incorrect 
estimate of IC50 and �max leads to the potential for over- or 
under-dosing as new drugs move from in vitro to animal and 
human studies (Kurilov et al. 2020; Bae et al. 2020). This 
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can result in either underestimation of the toxic effect of the 
drug and increased animal mortality in further in vivo exper-
iments or prevent effective therapeutics and nanoformula-
tions from further developing into treatment mechanisms.

A variety of alternative measurements have been pro-
posed, such as using additional features of the dose–response 
curve like area under the curve (AUC) or the slope of the 
curve, for a more complete characterization of the effect 
of a drug (Fallahi-Sichani et al. 2013; Brooks et al. 2019). 
Another suggestion is to use other points on the dose 
response curve such as the minimal response or the dose 
with the maximum affinity in the response reaction (Cal-
helha et al. 2017; Brooks et al. 2019). There is also a new 
assay that separately measures a drug’s effect on cell death 
from the drug’s effect on cell growth, calculating separate 
IC50 for each (Bae et al. 2020) together with suggestions of 
using both positive and negative controls to normalize drug 
response measurements (Gupta et al. 2020). Unfortunately, 
these suggestions still use dose–response curves generated 
by measuring the number of cells on a particular day and 
these additional measures might suffer from the same time-
dependence issue as IC50 and �max.

A more promising suggestion is to use measurements of 
growth rate (GR) in order to generate dose–response curves 
(Hafner et al. 2016; Harris et al. 2016; Niepel et al. 2019). 
Growth rate is largely independent of measurement time 
after a short transient phase and before the plateau (Harris 
et al. 2016). Thus, dose–response curves can be generated 
that result in consistent GR50 and GR

max
 estimates (Hafner 

et al. 2016). While this is a promising idea, experimental 
data must be taken after the initial transient phase, and, thus 
there have been problems with implementing this technique 
in a manner that is reproducible in different research centers 
(Niepel et al. 2019).

The use of mathematical modeling and computer simula-
tion has become increasingly important to the development 
of pharmaceuticals (Zhang et al. 2006). Pharmacokinetic 
models have long been used to predict absorption and elimi-
nation of pharmaceutical compounds in the body (Chen et al. 
2012). These models are increasingly being linked to physi-
ological models to assess both the effectiveness of a drug, as 
well as possible side effects (Marouille et al. 2021; Paredes 
Bonilla et al. 2021). These computational models can be 
used to help predict the effect of different drug doses or 
treatment regimens (Frymoyer et al. 2019; Garcia-Cremades 
et al. 2019; Choi et al. 2021) and are helping to increase the 
pace of drug development, thereby getting new therapies to 
patients faster (Nayak et al. 2018). Computer simulation is 
also being used to help identify potential therapeutic com-
pounds via in silico examination of drug candidates binding 
to target sites (de Witte et al. 2016; Bhardwaj and Purohit 
2021). Not only can these molecular level simulations iden-
tify potentially useful compounds (Salo-Ahen et al. 2021; 

Singh et al. 2021), but computer simulations of the bind-
ing process can help determine the residence time, thereby 
providing insight into potential drug side effects (Schuetz 
et al. 2017).

In this paper, we extend the use of mathematical mod-
eling to the estimation of drug effectiveness parameters. We 
describe a new method, recently used to assess the effective-
ness of quantum dot delivery of doxorubicin (Frieler et al. 
2021), for determining time-independent values for IC50 and 
�max using mathematical model fitting to cell growth data. 
The objective of this study is to determine whether the new 
method can produce robust and reliable estimates, consist-
ent with previous estimates from the literature, of both the 
IC50 and �max of doxorubicin in HeLa and MCF-7 cells. We 
measure growth of MCF-7 and HeLa cells both with and 
without doxorubicin for 14 days. We fit the experimental 
data with mathematical models to extract the �max and IC50 . 
While we find reasonable estimates for both values, we also 
observe that the parameters show some correlation and that 
�max is not always locally identifiable, suggesting that addi-
tional experimental measurements will be needed to ensure 
robust parameter estimation.

Methods

Experimental data

We chose to test the new methodology using two commonly-
used cancer cell lines, MCF-7 (breast cancer cells) and HeLa 
(cervical cancer cells), treated with a common chemotherapy 
drug, doxorubicin (DOX). We opted to use two different cell 
lines to assess whether the method will work to estimate in 
IC50 and �max for different types of cancer. Doxorubicin is 
effective in slowing growth of a number of different types of 
cancer (Meredith and Dass 2016), adding to broader appli-
cability of the method, if successful. Both MCF-7 and HeLa 
cell lines are known to respond to treatment with DOX and 
there are multiple estimates of the IC50 in both cell lines 
available in the literature (Amin et al. 2017; Alagumuthu 
and Arumugam 2017; Boraei et al. 2017; Kuete et al. 2016; 
Salem and Ali 2016; Attia et al. 2020; Robledo-Cadena et al. 
2020; Andreeva et al. 2020; Phutdhawong et al. 2021; Gabr 
et al. 2016) to enable comparison with estimates determined 
with our new methodology.

MCF-7 and HeLa cells were obtained from ATCC (atcc.
org). MCF-7 and HeLa cells were grown in cell culture using 
Dulbecco’s modified eagle media (DMEM, 10% fetal bovine 
serum, 1% non-essential amino acids, L-glutamine, Penicil-
lin, Streptomycin) at 37◦ C and 5% CO2 . When cells reached 
confluency, the medium was aspirated and the cells were 
washed with 1x PBS. 0.05% trypsin was added to detach 
cells and was then quenched with DMEM. Cells were then 
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counted using a hemocytometer and plated and used in 
experiments with 10% of cells reserved in a new flask with 
DMEM.

The two cell lines were used in cell growth experiments 
where they were plated on 12 well trays at a density of 1,000 
cells/well with 2 mL of medium in each well. The plates 
were incubated at 37◦ C and 5% CO2 . The chemotherapy 
drug doxorubicin was added at concentrations of 0.05, 
0.005, 0.0005, and 0.00005 �g/mL. Measurements of cell 
growth were made every 48 h for 14 d. For each measure-
ment, medium was removed from 3 of the wells and washed 
with 1x PBS. 0.05% trypsin was added to detach the cells 
and medium was added to quench the trypsin. Cells were 
then counted using a hemocytometer.

Mathematical modeling

Cancer growth is most commonly modeled with the logistic 
ordinary differential equation (ODE), so we use this as the 
basis for our parameter estimation (Verhulst 1838),

where N is the number of cancer cells, � is the growth rate, 
and K is the carrying capacity. The logistic model produces 
a sigmoidal curve, meaning that the cell growth is limited 
by either space or access to nutrients.

We apply the effect of drug treatment in the models 
through the use of a drug efficacy parameter, � . Drug effi-
cacy is found from the applied drug concentration via the 
Emax model (Holford and Sheiner 1981),

where D is the concentration of drug, �max is the maximum 
effect of the drug, and IC50  is the drug concentration at 
which the drug achieves 50% of its maximum effect. When 
applying the drug effect we multiply a particular model 
parameter by (1 − �) to cause a reduction in the value of the 
parameter. For example, multiplying � in the logistic model 
by (1 − �) will decrease the cell growth rate when drug is 
applied.

The anticancer drug doxorubicin disrupts DNA repair 
and generates free radicals that damage the cell membrane 
(Thorn et al. 2011; Sritharan and Sivalingam 2021), sug-
gesting several possible mechanisms of action that need to 
be captured in the model. Thus we investigate different pos-
sible mechanisms of action by applying the drug effect to 
different parameters in the models. For the logistic model, 
we can apply the drug effect to the growth rate, indicating a 
drug that inhibits the cell replication rate in some capacity. 
A drug that is applied to the carrying capacity in the logistic 

(1)
dN

dt
= �N

(

1 −
N

K

)

,

(2)� = �max

D

IC50 + D
,

model could represent a drug that modulates host factors and 
the tumor environment (Mulder et al. 2019; Roskoski 2019; 
Awasthee et al. 2019).

Data fitting

We use a two-step fitting process. We first fit control data 
to determine the baseline parameters of the growth model. 
We then fit the treated cell growth data, using all drug doses 
simultaneously, to determine the IC50 and �max . Fitting is 
done by minimizing the sum of squared residuals (SSR) 
using the Nelder-Mead algorithm implemented in Python. 
The initial number of cells is fixed to 1000 to match experi-
mental protocal. We intentionally kept parameters within 
a biologically realistic range by using a logarithmic trans-
formation on � , K, and IC50 to ensure positive values and 
a logistic transformation on �max in order for it to remain 
between 0 and 1. Goodness of fit was assessed both through 
SSR and through Akaike’s “an information criterion” 
( AIC

C
 ) for small sample size,

where n is the number of data points and K is the number 
of parameters (Burnham and Anderson 2002). The model 
with the lowest AIC

C
 is considered to be the better model 

given the experimental data. 1000 bootstrap replicates were 
performed to determine 95% confidence intervals and assess 
parameter identifiability.

Results

Comparing drug mechanisms of action

Model fits to cell growth data of doxorubicin-treated MCF-7 
and HeLa cells are shown in Fig. 1. Estimates for the best fit 
parameter values are given in Table 1. For MCF-7 cells, we 
find that the best model for describing the growth of treated 
MCF-7 cells, based on the lowest AIC

C
 value, is the logistic 

model with a drug effect applied to the carrying capacity, 
while for HeLa cells the assumption of a drug that reduces 
growth rate provides the better description. It is important 
to note, however, that the AIC

C
 of both drug models agree 

within error, so we essentially cannot distinguish between 
the two potential drug models.

For MCF-7 cells, we get IC50 values of 5.40×10−3 �
g/mL (95% CI (1.19–16.6)×10−3 �g/mL) for a drug that 
decreases growth rate and 1.86×10−3 �g/mL (95% CI, 
(0.785–5.80)×10−3 �g/mL) for a drug that decreases car-
rying capacity, which are lower than IC50 estimates deter-
mined through traditional techniques that range from 

(3)AIC
C

= n ln

(

SSR

n

)

+
2(K + 1)n

n − K − 2
,
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0.05–3.3 �g/mL (Amin et  al. 2017; Alagumuthu and 
Arumugam 2017; Boraei et al. 2017; Kuete et al. 2016; 
Salem and Ali 2016). The estimated maximum efficacy 
of the drug is high for both models — 0.813 (95% CI 
0.445–1.00) and 0.989 (95% CI 0.819–1.00) — but does 
not hit the maximum allowed value of 1. For HeLa cells, 
the IC50 are of the same order of magnitude as for MCF-7 
cells (13.9×10−3 �g/mL (95% CI (5.99–39.1)×10−3 �g/
mL) for a drug that decreases growth rate and 3.48×10−3 
�g/mL (95% CI, (1.68–22.9)×10−3 �g/mL) for a drug that 
decreases carrying capacity). These are also lower than 
IC50 estimates for doxorubicin in HeLa cells estimated via 
traditional methods, which range from 0.64–14 �g/mL 
(Attia et al. 2020; Robledo-Cadena et al. 2020; Andreeva 
et al. 2020; Phutdhawong et al. 2021; Gabr et al. 2016). 
Reasons for these lower IC50 estimates in both cell lines 
are discussed in Sect.  3.4. The �max estimates for HeLa 
cells are 1.00 for both models suggesting that there might 
be an issue with identifiability of this parameter.

Parameter identifiability

While model fitting will yield parameter estimates for 
IC50 and �max , we would like to ensure that these parameters 
are uniquely identified. If there is insufficient data, then there 
are pairs of parameters that will yield similar curves. For 
example, in our case it might be possible to lower �max , then 
lower the IC50 to compensate and still get the same SSR. 
Since these parameters are used to help determine dosages 
in treatment, it is important that we ensure such a trade-off 
is not happening. Figure  2 shows the parameter correlation 
plots for logistic model fits to the MCF-7 data (top row) 
and the HeLa cell data (bottom row). Ideally, the correlation 
plots should be scattered points in a circle, indicating no 
clear relationship between the two parameters. In this case, 
there appear to be relationships between the parameters. 
When fitting the control data, lower growth rates require 
higher carrying capacities in order to fit the data well. For 
the drug effectiveness parameters, we see a tendency of 

0 2 4 6 8 10 12 14
Time (d)

0

100000

200000

300000

400000

C
el

l c
ou

nt
 

Control
0.00005 µg/ml Dox
0.0005 µg/ml Dox
0.005 µg/ml Dox
0.05 µg/ml Dox

MCF-7 A

0 5 10 15
Time (d)

0

1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

6×10
5

C
el

l c
ou

nt
 

Control
0.00005 µg/ml Dox
0.0005 µg/ml Dox
0.005 µg/ml Dox
0.05 µg/ml Dox

HeLa B

Fig. 1  Model fits to cell growth data treated with doxorubicin. Under the assumption of logistic growth, the solid lines give the best fit for a drug 
that acts on � and the dashed lines give the best fit for a drug that acts on K for MCF-7 cells (A) and HeLa cells (B)

Table 1  Best fit parameter estimates for the logistic model under different drug mechanism assumptions

Drug effect � (/day) K (cells) IC
50

 (�g/mL) �
max

  SSR AIC
C
 

MCF-7 cells
Drug on � 0.652 2.45×105  5.40×10−3 0.813 1.38×1011  890
95% Confidence interval 0.517–0.920 (1.78–3.80)×105  (1.19–16.6)×10−3 0.445–1.00 (0.366–2.31)×1011  837–911
Drug on K 0.652 2.45×105  1.86×10−3 0.989 1.19×1011  884
95% Confidence interval 0.517–0.920 (1.78–3.80)×105  (0.785–5.80)×10−3 0.819–1.00 (0.323–1.94)×1011  832–904

HeLa cells

Drug on � 0.727 4.92×105  0.0139 1.00 5.29×1010  732
95% Confidence interval 0.655–0.767 (3.86–7.87)×105  0.00599–0.0391 0.418–1.00 (0.920–11.5)×1010  679–758
Drug on K 0.727 4.92×105  3.48×10−3 1.00 8.14×1010  746
95% Confidence interval 0.655–0.767 (3.86–7.87)×105  (1.68–22.9)×10−3 0.599–1.00 (4.47–18.2)×1010  726–774
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�max to be at its maximum value of 1. When �max moves off 
this value, there appears to be a correlation between �max and 
IC50 where lower values of �max result in lower values of 
IC50.

The tendency of �max to be at its maximum value of 1 sug-
gests that there might be difficulty in reaching a minimum 
of the SSR. To investigate this possibility, we examined the 
likelihood profiles. These are shown for the fits of the logis-
tic model to MCF-7 cells in Fig. 3 and for HeLa cells in 
Fig. 4. The likelihood profiles are all parabolic, with our 
estimated best fit value at the minimum, with the exception 
of the �max estimate for HeLa cells under the assumption of 
a drug that reduces carrying capacity. The likelihood profile 
near that estimate of �max is also parabolic, but the minimum 
is reached at values of �max higher than 1. With the excep-
tion of that one estimate of �max , the profiles indicate that 
there is at least local identifiability of the parameters (Raue 
et al. 2009). 

Additional measurements

While the likelihood profiles show that most of the param-
eters are locally identifiable, the correlations between 
IC50 and �max suggest that we should explore the possibility 
of additional experimental measurements that might help 
refine the parameter estimates. We performed additional 
experiments using MCF-7 cells with two additional drug 
doses between 0.005–0.0005 �g/mL. We chose additional 
doses in this range because there is a gap between curves 

in this range, so additional measurements here might help 
better define the dose response and lead to better estimates 
of IC50 and �max .

We fit the extended data set using the logistic model and 
both options for modeling of the drug effect. The model 
fits to experimental data, along with correlation plots and 
likelihood profiles, are shown in Fig. 5. Fig. 5 shows the 
model fits to the extended data set (note the two additional 
lines for treatment with DOX at concentrations of 0.01  
�g/mL and 0.015 �g/mL). While the correlation plots and 
likelihood profiles look similar to those generated from the 
original data set, we do find some slight differences. The 
correlation plots show less clustering near the maximum 
�max value of 1, however, the �max is no longer at the mini-
mum of the likelihood profile for either drug mechanism.

Note that the control data is the same for our original 
and extended data sets, and since we use a two-step fitting 
process, the growth rate and carrying capacity estimated 
values are the same as in Table 1, so only the new IC50 and 
�max estimates are given in Table 2. While the IC50 values 
found for the extended data set are not exactly the same as 
for the original data, they do agree within error indicating 
some robustness in the IC50 estimate. The �maxvalues for 
both drug assumptions are estimated to be the maximum 
value of 1.0. Interestingly, the AIC

C
 for both drug assump-

tions is basically the same, again suggesting an inability to 
pinpoint drug mechanism of action in this simple cancer 
growth model.
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Fig. 2  Correlation plots for parameter estimates of logistic model fits 
to MCF-7 and HeLa data. We plot the results of parameter estimates 
from 1000 bootstrap replicates for A and D � and K, B, E IC

50
  and 

�
max

 for drug effect on � , and C, F IC
50

 and �
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 for drug effect on K 
for MCF-7 cells (top row) and HeLa cells (bottom row)
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The additional experimental measurements did not help 
break the correlation between IC50 and �max estimates. While 
we have maintained identifiability of IC50 values for both 
models, unfortunately we are no longer able to identify 
�max for either model. The local minimum of the SSR occurs 
at values of �max higher than 1 for both drug assumptions. 
The additional experimental measurements did not help 
reduce the uncertainty in parameter estimates or improve 
parameter identifiability.

Traditional IC
50

 estimates

We used the parameter estimates from Table 1 and the math-
ematical model to simulate traditional dose–response curves 
for each of the parameter sets. Cell cultures were initiated 
with 5000 cells and cells were counted 48 h after application 
of a particular concentration of doxorubicin. Dose–response 
curves are shown in Fig. 6. IC50 and �max measurements 
derived from the dose response curves are given in the 
table. We can see that estimation of IC50 and �max using dose 
response curves derived from cell viability at a specific time 
leads to an IC50 estimate different from the IC50 used for 

simulation. In particular, the IC50 measured via cell viability 
underestimates the true IC50 when we assume a drug acts on 
growth rate and overestimates the true IC50 when we assume 
a drug acts on carrying capacity. This example shows the 
distinction that needs to be made between an IC50 that rep-
resents a drug’s effect on cell viability and an IC50 that rep-
resents a drug’s effect on a particular biological process.

Discussion

In this study, we used in vitro cell growth data to estimate 
two parameters, IC50 and �max , that characterize the efficacy 
of doxorubicin in MCF-7 and HeLa cell lines. For MCF-7 
cells, we found that the effect of doxorubicin was better 
described by reduction in the carrying capacity, while for 
HeLa cells, the effect of doxorubicin was better described 
by reduction in the growth rate. Doxorubicin is known to 
have a number of different effects on cells (Thorn et al. 2011; 
Sritharan and Sivalingam 2021), including causing damage 
to cell DNA by disrupting topoisomerase-II (TOP2)-medi-
ated DNA repair. Doxorubicin is also known to generate 

Fig. 3  Likelihood profiles for 
the parameter estimates of the 
logistic model fits to MCF-7 
cell growth data. Figures show 
the changes in SSR as the fol-
lowing parameters are varied 
about their best fit estimate: A 
� , B K, C IC

50
 for a drug effect 

on � , D �
max

 for a drug effect on 
� , E IC

50
 for a drug effect on K, 

F �
max

 for a drug effect on K. X 
marks the position of the best fit 
estimate



In Silico Pharmacology            (2022) 10:2  

1 3

Page 7 of 12     2 

free radicals that can cause damage to the cell membrane. 
Neither of these mechanisms can be explicitly incorporated 
in the logistic model since the model lacks biological detail, 
so it is likely the effect of the drug is captured to some extent 
by both drug model formulations. Experiments have noted 
some differences in response of MCF-7 and HeLa cell lines 
to doxorubicin (Khan et al. 2018; Kazan et al. 2020), so 
which mathematical model best captures the effect of doxo-
rubicin will depend on which mechanism dominates in a 
particular cell line.

We found that the IC50 estimates using our new method 
were lower than IC50 estimates found in the literature for 
doxorubicin treatment of both cell lines. Traditional esti-
mates of IC50 assess cell viability at a particular measure-
ment time and are known to be dependent on the spe-
cific time chosen to assess cell viability (Murphy et al. 
2020; Harris et al. 2016; Hafner et al. 2016). Thus, tra-
ditional IC50 measurements are an indication of how the 
drug affects cell viability at a specific time, whereas the 
IC50 estimate produced by our technique is an indication of 
how the drug alters a particular biological process: either 
change in growth rate or carrying capacity in this case. 

Previous work has shown that traditional IC50 measure-
ments underestimate the mechanistic IC50 when we assume 
a drug acts on growth rate and overestimate the mechanis-
tic IC50 when we assume a drug acts on carrying capacity 
(Murphy et al. 2020), as we saw when we used our param-
eter estimates to simulate cell viability assays.

While this method allows for estimation of IC50 and 
�max  that are independent of measurement time and are 
more representative of drug mechanism, there are still 
problems that need to be resolved. We found that with a 
14 day time course, we were unable to uniquely identify 
the parameters. There were correlations between the car-
rying capacity and growth rate estimates for the logistic 
model, although we reached a local minimum SSR for both 
parameters. The IC50 was also always locally identifiable, 
but �max tended towards its maximum possible value and 
often was not at a local minimum. We attempted to address 
this issue by adding additional experimental measurements 
at intermediate drug concentrations, but this did not fix the 
problem. Further work to address this might involve more 
frequent measurements or measurement of cell growth 

Fig. 4  Likelihood profiles for 
the parameter estimates of the 
logistic model fits to HeLa cell 
growth data. Figures show the 
changes in SSR as the following 
parameters are varied about 
their best fit estimate: A � , B 
K, C IC

50
 for a drug effect on 

� , D �
max

 for a drug effect on � , 
E IC

50
 for a drug effect on K, F 

�
max

 for a drug effect on K. X 
marks the position of the best fit 
estimate
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Fig. 5  Model fits to extended 
MCF-7 cell growth data treated 
with doxorubicin. A Under the 
assumption of logistic growth, 
the solid lines give the best fit 
for a drug that acts on � and the 
dashed lines give the best fit for 
a drug that acts on K. Correla-
tion plots for IC

50
 and �

max
 esti-

mates assuming doxorubicin 
decreases growth rate (B) and 
assuming doxorubicin decreases 
carrying capacity (C). Likeli-
hood profiles for IC

50
 (D) and 

�
max

 (E) under the assumption 
that doxorubicin decreases 
growth rate. Likelihood profiles 
for IC

50
 (F) and �

max
 (G) under 

the assumption that doxorubicin 
decreases carrying capacity

Table 2  Best fit parameter 
estimates for the extended 
MCF-7 data set with the logistic 
model

Drug effect IC
50

 (�g/mL) �
max

  SSR AIC
C
 

Drug on � 6.61×10−3 1.00 1.40×1011  1220
95% Confidence interval (1.66–16.5)×10−3 0.479–1.00 (0.366–2.25)×1011  1150–1250
Drug on K 1.18×10−3 1.00 1.25×1011  1220
95% Confidence interval (0.411–6.94)×10−3 0.604–1.00 (0.552–1.90)×1011  1170–1240
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over a longer period of time, which, however, does not 
guarantee a universal fix of the issue.

Another potential route to address the identifiability 
problem is to use alternative mathematical models of can-
cer growth. There are several simple ordinary differential 
equation models used to describe cancer growth (Gerlee 
2013; Murphy et al. 2016; Sharpe and Dobrovolny 2021) 
and many mathematical models that include more details 
of the cancer growth process (Abbas-Aghababazadeh et al. 
2019; Brady and Enderling 2019). Since the logistic model 
used in this work only has two parameters, each parameter 
represents a number of different underlying biological pro-
cesses, only some of which might be affected by the drug. 
This lack of detail could be limiting our ability to select a 
best mathematical representation of the effect of doxoru-
bicin. This could also be contributing to the limited identi-
fiability of �max and the correlation between �max and IC50 . 
However, even more detailed models have noted similar 
problems in fitting experimental cancer growth data. A 
study assessing the effect of androgen suppression therapy 
on prostrate cancer noted difficulty in determining many of 
the parameters of their model (Wu et al. 2019). A detailed 
study of the identifiability of a different cancer growth 
model suggests that lack of practical identifiability could 
lead to incorrect treatment efficacy estimates (Eisenberg 
and Jain 2017). More generally, researchers are trying to 
devise criteria for both models and data that would allow 
separation of drug efficacy parameters and system param-
eters (Evans et al. 2018) or are investigating alternative 
fitting methods that might lead to better parameter identifi-
ability (Rutter et al. 2009; Chrysanthopoulou et al. 2021; 
Kerioui et al. 2020).

Conclusion

This new joint theoretical and experimental study presents 
a preliminary assessment of model fitting of in vitro cancer 
growth data as a means of estimating the drug efficacy 
parameters IC50 and �max. The method shows promise in 
being able to provide an estimate of IC50 that is independ-
ent of measurement time and more closely linked to the 
mechanism of action of the drug, which was not previously 
achieved. The limitations of the study are that parameter 
identifiability and robustness of the parameter estimates 
have not been established. Future studies are needed to 
assess whether more frequent measurements, longer time 
courses, or growth model choice will improve the reli-
ability of this method.
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