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A B S T R A C T

For many years, infectious disease modelers have used agent-based models to study the spread of viruses,
but the models were too computationally intensive to fully replicate even in vitro experiments. Now, with
technological advancements and accessible software, agent-based models can be used to their full potential.
In this work, we created an agent-based model that expresses viral transmission and diffusion, can manipulate
and track individual cells, and can be fit to real experimental data in a timely manner due to acceleration
of computation with graphics processing units (GPUs). The use of GPUs allows simulations to run on desktop
computers in a few minutes or hours, while still simulating an accurate number of cells to replicate infection
experiments. This model can now be used to study in-host infections quickly, so that in the event of an outbreak
or epidemic a treatment plan and course of action can be developed in less time.
1. Introduction

Agent-based (individual-based or micro-simulation) models have
been around since 1970 with the introduction of ‘‘Conway’s Game of
Life’’ [1]. These models have been utilized in many different fields
from physics to the study of fish (ichthyology) [2] and continue to be
popularized for different applications by software like Netlogo [3,4].
The models consist of a collection of agents whose behavior is de-
termined by mathematical or computational rules. The agents of the
system can move freely [5] or be fixed in a grid or lattice [6] for varying
applications, but either configuration allows for tracking of spatially
emergent patterns. In recent years, the field of virology has started
using agent-based models to study the spread of viruses in a monolayer
of cells [6–13] in an effort to study the spatiality of viral spread.

In a lab, in vitro viral infections are performed on layers of cells
grown to the point of confluence, where there is on the order of 105–
106 cells [14]. Virus modelers are using ABMs to simulate the two
dimensional layer of agents to replicate experiments that are done in
vitro in order to better understand factors that affect viral spread. The
agent-based model framework is appealing to virus modelers because
it allows for the individual tracking of how cells, as agents, interact
with the virus, and has the potential to replicate in vitro and eventually
in vivo viral infections. Currently, however, the implementation of
agent-based models in the field of virology has two issues: speed and
size.

Agent-based models are notorious for being computationally inten-
sive and taking long amounts of time to run simulations. This point
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has been commented on in a previous article [15] and the feasibility of
ABMs for research has been talked about as a goal that is to come with
increasing computational advancements [16]. Previous research has
addressed this lack of computing power issue by reducing the number
of agents modeled and therefore reducing the number of computations
required for a simulation. In other in-host studies, the number of
agents published is at minimum an order of magnitude lower than
the number of target cells used in the corresponding experimental
data. Beauchemin et al. [6] simulated 1.232 × 105 agents, while the
experiment they were attempting to replicate was performed in 6 well-
plates and had ∼1.2 × 106 cells per well. Alvarado et al. [7] simulated
4.0 × 104 agents when trying to replicate experiments also performed
in 6 well-plates. Wodarz et al. [8] simulated 2.0 × 104 agents, while the
experiment they were replicating was performed in 24 well-plates and
had ∼2.4 × 105 cells per well. Tong et al. [9] simulated 6.0 × 105 agents
in an effort to simulate mice lungs, which have ∼109 cells. These smaller
simulations are more affected by boundary interactions, which can
result in model dynamics that do not faithfully reproduce the infection.
This can hinder the research process and can make it difficult to use
models for treatment optimization and personalized medicine.

While it might be feasible to wait long periods of time to run
accurate simulations for endemic or recurrent seasonal viruses, recent
events of the COVID-19 pandemic indicate how great a need there is
for accurate and fast modeling methods. Epidemiological population-
level modeling tools that include both ordinary differential equation
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(ODE) models [17,18] and ABMs [19–21] were immediately deployed
to help predict how the new virus would spread around the world
and how different interventions could help stem the spread. At the
within-host level, the primary modeling tool was limited to simple
ODE models [22–25] that lack the ability to reproduce the spatial
heterogeneity of real viral infections. Of the ABMs, Getz et al. [26]
is a community-driven ABM, incorporating many realistic biological
responses, that was quickly developed for SARS-CoV-2, but is only
currently simulating a few thousand agents and is expected to need
high-performance computing or cloud resources to parameterize the
model. Fast and accurate in-host models could be helpful in assess-
ing the potential of re-purposed drugs [22,27,28], finding indicators
of disease severity or mortality [29], and assessing the effectiveness
of testing [30]. As the field of virology continues to move towards
methods of modeling like ABMs for in-host viral dynamics, researchers
need to be aware of how to increase computational performance in
accessible ways and potentially with equipment that is already in the
lab.

In this paper, we present the testing and validation of a combina-
tion agent based model (ABM) and partial differential equation model
(PDEM) implemented on GPUs, which allows for rapid simulation of
large-scale ABMs on desktop computers. The work here begins with
the methods, where the four attributes of the model — the agent-
based model of the cells, the partial differential equation model of
the virus, the cell-free transmission mode of viruses, and fitting of the
model to data — are explained. We then present the results of model
implementation with parallel programming, convergence testing, and
simulation speed improvement. Finally, we show that the model can
reproduce experiments by fitting the model to an example data set
from an in vitro influenza experiment. Allowing for this work to be
an example, the main contributions to computational science and the
main takeaways for researchers are to call attention to the current and
increasing power of desktop GPUs, and that ABMs of large and complex
systems can be simulated in reasonable amounts of time using desktop
GPUs without the need of a ‘‘super computer’’.

2. Methods

2.1. Model details

In this work, a two dimensional biological system is simulated with
a mathematical model. The system is a culture dish of a monolayer of
cells with virus diffusing over the cells. The model is a combination
of an agent based model (ABM) and a partial differential equation
model (PDEM) where the cells are represented with an ABM and virus
diffusion is represented by a PDEM.

2.1.1. Viral transmission
When a virus is spreading among the cells in a culture dish, there

is a probability that a healthy cell becomes infected by virus that is
not within a cell, but flowing around and above the cell. When this
viral transmission occurs it is called cell-free transmission. For cell-
free transmission, the probability (Pcf ) that a cell becomes infected is
determined by the amount of virus that is covering the cell (𝑉 ), the
infection rate (𝛽) [31], and the time step (𝛥𝑡),

cf = 𝑉 𝛽𝛥𝑡.

s a healthy cell becomes surrounded by more virus, the probability
f cell-free infection increases. If, due to the build up of virus, Pcf ever
ecomes greater than one, the time step is divided in half until the
robability is back below one. Then for each moment the time step was
alved, the new probability of cell-free infection is compared with a
umber from the uniform distribution. If during any of the comparisons
he number is less than the new probability of cell-free infection, then
2

he cell becomes infected.
Fig. 1. Here the attributes of hexagonal coordinates are illustrated. The attributes are
used to save time by either reducing the number of calculations needed or the amount
of searching through data arrays. Figure (a) shows that the three different regions are
cyclic permutations of each other, therefore reducing the number of agent locations
needed to be calculated. Figure (a) also shows, in the darker shaded regions, that the
neighbors of a hexagon can be found by adding a cyclic permutation of the two vectors
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. Figure (b) shows that the locations of the hexagons can be stored

in a square matrix that can easily be uploaded into computer memory.

2.1.2. Spatial accounting
To allow for the two dimensional aspect of the culture dish to be

represented in the model, the cells are approximated as hexagons. Using
hexagons allows for an elegant managing of the cells’ shapes in the
dish and the viral transmission. Since the culture dishes are grown to
confluence, the cells are close enough that they push on each other
and the cell walls deform. This causes the cells to no longer be in
the shape of a circle, but become irregular polygons with multiple
sides [32]. Modeling the cells as hexagons gives the cells definite sides
and the cells are able to span any two dimensional region forming a
hexagonal grid. Furthermore, by using a hexagonal grid, when virus
particles spread among this population of cells the indexing of the grid
can be used to find the neighbors of any cell. This will be used for
cell-free transmission to know where virus will flow away from (high
concentrations areas) and to (low concentration areas) during diffusion.

In addition to helping with the physical representation of the model,

hexagonal coordinates (often represented by vectors
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, with 𝑞, 𝑟,

nd 𝑠 directions) have some other attributes that can be utilized to
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optimize the code for quicker compute times. The three attributes that
this code utilizes are:

1. The coordinates can be split in to three sectors where the hexag-
onal coordinates 𝑞, 𝑟, and 𝑠 are simply cyclic permutations.

2. The neighbors of a particular hexagon can be found by adding, to

that hexagon’s coordinates, a cyclic permutation of
⎡
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three of the neighbors and
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for the other three neighbors.

3. The 𝑞 and 𝑟 hexagonal directions can be used as indices of a
matrix.

hese attributes save time by either reducing the number of cal-
ulations needed or the amount of searching through data arrays.
pecifically, Attribute 1 reduces the number of cell locations that need
o be calculated by a third, as seen in Fig. 1(a), where the coordinates
f the hexagons in each of the three sections (red, green, or blue) are
cyclic permutation of the coordinates of the hexagons in a different

ection. Attribute 2 gives the coordinates of the neighboring hexagons
o a particular hexagon by adding to that hexagon’s coordinates a cyclic

ermutation of
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. This can be seen in the darker

exagons of Fig. 1(a) for the hexagon
⎡

⎢

⎢

⎣

0
0
0

⎤

⎥

⎥

⎦

. Attribute 3 allows the

hexagon locations to be easily stored and referenced in the memory of
a computer. Fig. 1(b) illustrates Attribute 3 by showing the locations
of the hexagons mapped to a square grid using the 𝑞 and 𝑟 coordinate
of hexagonal coordinates.

2.1.3. Agent-based model
In an ABM, a system is broken down into smaller units called

‘‘agents’’. Each of the agents are governed by a set of rules on a local
scale with large scale phenomena resulting from interaction of the
agents, so the two scales are studied to find the connections. As a
simulation of the model is stepped through time, the agents act and
interact. These actions cause bulk properties, that may appear discon-
nected from the individual agents, to manifest. Properties are observed
and measured to find the connection between the small interactions
and large scale properties.

In this work, an ABM governs the transitions a cell makes through
the stages of infection: healthy, eclipse, infected, and dead. A cell in the
healthy state is an uninfected cell that remains healthy until infected.
A cell in the eclipse state is an infected cell that is not yet producing
virus. The cell remains in the eclipse state for an average amount of
time, 𝜏𝐸 . The specific time value for each cell is determined by a gamma
distribution with shape value 𝜂𝐸 and scale value 𝜏𝐸∕𝜂𝐸 . A cell in the
infected state is an infected cell that is producing virus. The cell remains
in the infected state for an average amount of time, 𝜏𝐼 . The specific time
value for each cell is determined by a gamma distribution with shape
value 𝜂𝐼 and scale value 𝜏𝐼∕𝜂𝐼 . A gamma (Erlang) distribution is used
for the amount of time in the eclipse and infected phase, as suggested
by the work of Beauchemin et al. [33] and Kakizoe et al. [34]. A cell
in the dead state is a cell that can no longer change state, so once a cell
is in the dead state the cell remains in that state until the end of the
simulation. The flow of this is illustrated in Fig. 2.

The ABM uses four time arrays to track and transition the cells to
different states after infection. The four arrays universal time (UT),
healthy time (HT), eclipse time (ET), and infected time (IT) have an
element for each cell. The universal time array holds the amount of time
that each cell has been in the simulation; each element starts at zero
and increases each iteration by the simulation’s time step. The healthy
3

time array holds the amount of time that a cell is healthy; each element e
starts at zero and while the cell is healthy increases each iteration by
the simulation’s time step. The eclipse time array holds the amount of
time each cell is in the eclipse state and the infected time array holds
the amount of time each cell is in the infected state. For the eclipse and
infected arrays the amount of time is fixed and the value is determined
by a gamma (Erlang) distribution, as described above. The flow of this
is illustrated in Fig. 2.

2.1.4. Partial differential equation model
PDEMs are used to model multiple dimensions; in this work a

PDE in hexagonal coordinates is used to model the two-dimensional
spatial spread of virus over cells in a culture dish. In a PDEM, the
dynamics of a system can be represented by a partial differential
equation, or more specifically, an equation that contains multi-variable
functions that represent important system aspects and one or more
partial derivatives of those functions. In the culture dish, as an infected
cell releases virus into the extracellular fluid, the virus diffuses across a
concentration gradient. The PDEM represents this movement with the
diffusion equation,
𝜕𝑉
𝜕𝑡

= 𝐷∇2𝑉 + 𝑝 − 𝑐𝑉 , (1)

where 𝑉 is the density of the virus, 𝐷 is the diffusion coefficient, 𝑝 is the
production rate per cell, and 𝑐 is the viral clearance rate. In the code,
along with the assumption of hexagonal cells, the cells are assumed to
be flat, so the virus is diffusing over a smooth two dimensional plane.
This assumption allows for the use of the two dimensional diffusion
equation in hexagonal coordinates, so Eq. (1) becomes

𝜕𝑉
𝜕𝑡

= 𝐷 2
3
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hexagonal grid in hexagonal coordinates. For computation we solve the
diffusion equation, with Neumann boundary conditions, in hexagonal
coordinates using a forward Euler numerical scheme on the same grid
with the same grid spacing as the ABM.

2.1.5. Parameters of viral spread
The eight parameters 𝛽, 𝜏𝐸 , 𝜂𝐸 , 𝜏𝐼 , 𝜂𝐼 , 𝑝, 𝑐, and 𝐷 affect the

ynamics of virus spread in the model. Four of the parameters, 𝜏𝐸 , 𝜂𝐸 ,
𝐼 , and 𝜂𝐼 , are used in the ABM to choose the time duration that a
ell is in the eclipse and infected phase as mentioned in Section 2.1.3.
hree of the other parameters, 𝑝, 𝑐, and 𝐷, are used in the PDEM and
haracterize the differential equation, as mentioned in Section 2.1.4.
he final parameter, 𝛽, governs the interaction between the virus and
ells, setting the probability that the cell is infected. In order to model
particular virus, values for these parameters need to be chosen. The

nitial values of the parameters are chosen from ordinary differential
quation models of influenza and listed in Table 1 (viral titer units have
een converted to virions, as described in [35]).

.2. Computational details

.2.1. Implementation on GPUs
As the model becomes more complex, GPU acceleration via parallel

rogramming is used to decrease the simulation run times and therefore
ncrease the number of studies that can be conducted in a given time.
n the simulations, the cells change state based on the amount of virus
bove them. The number of cells in a culture dish is on the order of
06 cells [14], so the ABM will simulate a grid of 1001365 agents of
exagonal cells in a circle to best replicate what is happening in the

xperiment. Each agent will follow the rules of checking the amount of
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Fig. 2. The stages of infection: healthy, eclipse, infected, and dead are shown. The cells transition through the stages at different time points. Above: The time point when a state
transition occurs is shown in terms of UT, the universal time, for a cell. Below: The time point when a state transition occurs is shown in terms of average time. 𝜏𝐸 is the average
time a cell stays in the eclipse stage and 𝜏𝐼 is the average time a cell stays in the infected stage.
Table 1
Parameter values to simulate an influenza infection with the ABM/PDEM combo model.

Parameter Meaning Value Reference

𝛽 Infection rate 2.0∕h Scaled from Beauchemin et al. [36]
𝑝 Viral production rate 562800∕h Scaled from Beauchemin et al. [36]
𝑐 Viral clearance rate 0.105∕h Beauchemin et al. [36]
𝐷 Diffusion coefficient 2.16×10−8 m2∕h Stokes–Einstein equation
𝜏𝐸 Mean eclipse duration 6.0 h Beauchemin et al. [36]
𝜂𝐸 Eclipse shape parameter 30 Pinilla et al. [37]
𝜏𝐼 Mean infectious lifespan 12.0 h Beauchemin et al. [36]
𝜂𝐼 Infectious shape parameter 100 Pinilla et al. [37]
c
t
r
i
s

t

5
c
h
0

virus above the cell every time step. Utilizing attribute 3 of hexagonal
coordinates, the number of calculations is reduced from the order of
((𝑛2)) per time step to the order of the number of agents ((𝑛)). The
alculations from the agents’ rules are split over the processing units of
GPU to be calculated in parallel or simultaneously. To utilize parallel
rocessing, Nvidia’s CUDA (Compute Unified Device Architecture) is
sed to implement the ABM and PDEM. CUDA is an Application Pro-
ramming Interface (API) that allows the many processing units (cores)
n a Nvidia brand GPU to be used for computing.

To determine the gain in computation speed by use of GPUs, codes
tilizing serial and parallel processing are compared. For the serial
rocessing, two codes were written (not utilizing a threading frame-
ork, API, or package) one in Python and one in C. Python and
are two commonly used programming languages in physics. For

arallel processing, a C code was written utilizing CUDA. The amount
f computation time needed to simulate one hour of the infection was
easured and compared.

.2.2. Convergence testing
Partial differential equations (PDEs) are a popular way to model

ystems that evolve over both space and time, but often require com-
uters to produce solutions. With PDEs, even systems that have an
xact solution often need to be calculated on a computer because
f the infinite series that are required in those solutions. Therefore,
olutions to PDEs are often found through numerical integration. In the
umerical integration, space and time are discretized, that is, they are
ssumed to be made up of small units. From this discretization, time is
one dimensional line of points separated by a chunk of time called 𝛥𝑡

and two dimensional Cartesian space is a grid with a line of points for
each dimension where there is a chunk of space for each dimension
𝛥𝑥, 𝛥𝑦. At these points in time and space, a numerical integration
scheme approximates the solution of the PDE. Different numerical
schemes have different benefits. Depending on the phenomena that
needs to be studied with the PDE the size of 𝛥𝑡, 𝛥𝑥, and 𝛥𝑦 and the
4

hoice of numerical scheme are important. If the chunks of space or
ime are too large then the simulation does not have the resolution to
esolve phenomena that occur at smaller increments in the model and
f the numerical scheme requires too much computing power then the
olutions cannot be found in a timely manner.

Depending on the choice of numerical scheme, a conditional rela-
ionship between 𝛥𝑡, 𝛥𝑥, and 𝛥𝑦 must be met. For the symmetric, two

dimensional Euler’s method

𝛥𝑡 ≤ (𝛥𝑥)2

4𝐷
,

is the conditional relationship [38,39]. Satisfying this relationship is
necessary to ensure that the sequence of approximations that the nu-
merical scheme uses to approximate a solution converges, otherwise the
error grows exponentially to a point that the solutions are unreliable.
Using the relationship above, values for 𝛥𝑡, 𝛥𝑥, and 𝛥𝑦 can be chosen
to ensure stability of the error in the numerical scheme. As long as
that relationship is met, the solution is reliable within a certain error,
but the relationship does not give the 𝛥𝑡, 𝛥𝑥, and 𝛥𝑦 that are best for
producing accurate simulations with the least amount of computing
cost.

To ensure the simulation of the PDEM converges, we need to opti-
mize the space and time discretizations: 𝛥𝑡, 𝛥𝑥, and 𝛥𝑦. Convergence
testing is a simple brute force method where the input parameters are
increased or decreased by a particular amount and the accuracy or
trends of the simulation are measured for each of the new increments.
Schemes for convergence testing are implemented and studied in fields
like computational fluid dynamics [40,41] and astrophysics [42,43].
The model proposed in this work has fixed 𝛥𝑥 and 𝛥𝑦 to a value of
0 μm, because the simulations are of real cells, whose average diameter
an be measured between 50–100 μm. Thus the convergence testing only
as to be conducted for 𝛥𝑡. To conduct the study a starting point of
.005 h, about 5.78 times smaller than the conditional relationship of
25 ≈ 0.0289 h, was chosen and a range of seven values was created by
864
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Fig. 3. The dish at hours 5 through 60 in 5 h increments. On the left are cells in the different stages of infection; the stages are represented by healthy cells colored green, eclipse
cells colored cyan, infected cells colored red, and dead cells colored black. On the right are images of the virions that are diffusing over the cells; areas of higher concentration
are represented by yellow and areas of lower concentration are represented by purple.
multiplying or dividing the initial 𝛥𝑡 by 2 repeatedly. For each of these
𝛥𝑡s, the median viral titer curves of ten simulations were compared.

2.3. Data fitting

As part of our model validation, we verified that the model could
reproduce viral titer curves observed experimentally. The experimental
data set used here is from an in vitro experiment performed by Pinilla
5

et al. [37]. During the study, a well of a 24-well plate, containing
Madin–Darby canine kidney (MDCK𝛼2,6) cells was inoculated with the
A/Québec/144147/09 (H1N1) pandemic strain of influenza virus and
the supernatant fluid was collected every 6 h until 36 h and then every
12 h until 72 h post infection. The supernatant was then used for RNA
isolation and/or viral titration by standard plaque assay on MDCK𝛼2,6
cells. The specific data referenced for this work is the multiple-cycle
viral yield experiment shown in figure 2A of the Pinilla manuscript.
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Fig. 4. A zoomed in section of the dish looking at the plaque formed by a single infected cell during a viral infection at hours 6.5, 11.5, and 16.5. On the left are cells in the
different stages of infection; the stages are represented by healthy cells colored green, eclipse cells colored cyan, infected cells colored red, and dead cells colored black. On the
right are the many virus that are diffusing over the cells; areas of higher concentration are represented by yellow and areas of lower concentration are represented by purple.
To determine the best fit of the model to the experimental data, the
sum of square residuals (SSR) is minimized,

SSR =
𝑛
∑

𝑖=1
(𝑦𝑖 − �̂�𝑖)2,

where 𝑦𝑖 is from the experimental data set and �̂�𝑖 is from the simulated
data set. In our case, the simulated data set is the average of ten
cell-free transmission simulations. The initial conditions, of the cells
6

and virus, for each of the ten simulations are: Total cells — 1001365,
Total virus — 0.0, and Number of cells in the Eclipse phase — 10. To
perform the minimization, a separate code that utilizes the function
minimize from the python package scipy, was written. In the code,
five parameters (𝛽, 𝑝, 𝜏𝐼 , 𝜏𝐸 , and 𝑐) are allowed to vary and the
remaining parameters are held fixed to the values given in Table 1. The
minimization code is given an initial guess for the five parameters, then
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by the Nelder–Mead method the next set of parameters is produced,
until the minimum SSR is found.

3. Results

3.1. Model simulation

Using the influenza parameters of Table 1, we simulated an infection
initiated with 1001365 cells in a dish, 100 cells in the eclipse phase,
and no initial virus. Fig. 3 shows different views of plaques forming in
the entire dish. On the left are cells in the different stages of infection
described in Section 2.1.3, where the healthy cells are colored green,
eclipse cells are colored cyan, infected cells are colored red, and dead
cells are colored black. On the right are figures showing the correspond-
ing virus concentrations that are over the cells, where areas of higher
concentration are colored yellow and areas of lower concentration are
colored purple. Fig. 3 shows the infection in 5 h increments starting at
5 h, when no cells are producing virus, and ending at 60 h, when almost
all the cells have died. The ABM reproduces the plaques typically seen
in experimental in vitro infections [44].

For a closer look at the plaques, Fig. 4 is a zoomed in view of
the infection at hours 6.5, 11.5, and 16.5. The cells are shown on the
left, with the same color scheme used in Fig. 3, and the corresponding
virus distribution is shown on the right. Here we can clearly see
the heterogeneous growth of the plaque; it is not simply a radially
symmetric change of cells from eclipse to infectious.

3.2. Implementation on GPUs

To show how implementing GPUs could potentially increase the
computation speed for a researcher, we simulated ten viral infections
for five different numbers of cells, with codes that utilize three different
programming languages: Python, C, and CUDA. These codes were run
on a single desktop computer built with an Intel Xeon E-2144G CPU,
16 GB of RAM, and a P4000 Nvidia Graphics card. The amount of
computation time needed to simulate one hour of the infection is
shown in Fig. 5. The compute times for the three codes increase as
the number of cells in the simulations increases. The speed increase of
switching from Python, the programming language commonly used in
physics, to code written in C is about 40 times faster, similar to results
found in a general study of implementation of ABMs on GPUs [45],
and the speed increase is about 7000 times faster when switching to
code using CUDA for implementation on GPUs. These results show that
researchers can achieve a substantial computational speed increase by
simply implementing simulations of models on GPUs either directly
with CUDA (as done in this work) or using an API or software like
OpenACC, OpenMPI, and FLAME GPU.

3.2.1. Convergence testing
We examine three scenarios when testing the convergence of the

model: an infection initiated with 10013 cells in the eclipse phase
(Initial Cell); an infection initiated with 1012 virions (Initial Virus); and

scenario with no infection, but 1012 virions (Only Virus), examining
iral spread and decay only. Simulations in each of the scenarios used
he influenza parameters from Table 1. Fig. 6 shows the simulations
f the three scenarios, where the time step was varied to test the
onvergence of the model in time. A time step of 0.005 h, about 5.78
imes smaller than the conditional relationship from Section 2.2.2, was
hosen and a range around it was made by dividing or multiplying by 2
epeatedly. This formed an array of seven time step values, 0.000625,
.00128, 0.0025, 0.005, 0.01, 0.02, and 0.04 h, where all of the time
teps except 0.04 h are below the conditional relationship. For each
ime step, the median curve of ten viral titer curves is shown in Fig. 6,
rom left to right: curves of a viral infection initiated with infected
ells; curves of a viral infection initiated with virus; and curves of virus
ithout underlying cell infection. We see that for all the time steps,
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Fig. 5. With more than a million cells, CUDA is about 7000 times faster then the
Python code and about 40 times faster than the C code.

Table 2
Best fit parameter values from fitting model to experimental data [37].

Parameter Meaning Value

𝛽 Infection rate 54∕h
𝑝 Viral production rate 3000∕h
𝑐 Viral clearance rate 0.25∕h
𝐷 Diffusion coefficient 2.2×10−8 m2∕h (fixed)
𝜏𝐸 Mean eclipse duration 16 h
𝜂𝐸 Eclipse shape parameter 30 (fixed)
𝜏𝐼 Mean infectious lifespan 26 h
𝜂𝐼 Infectious shape parameter 100 (fixed)

except 0.04 h, the curves are hard to distinguish from one another and
follow the same trend for each scenario. These tests show that choosing
a time step value of 0.005 h for simulations is a selection that is well
below the conditional relationship, but also reproduces results that are
similar to simulations that were run with a time step slightly greater
than or slightly lower than 0.005 h.

3.3. Fitting the model to data

We fit the model to experimental in vitro data [37] via minimization
f the SSR. The initial conditions of the simulations were: 501535
ells in the dish (similar to the number of cells in a typical 24-well
late [14]), 50 cells in the eclipse phase, and no virus in the dish.
n Fig. 7, the median curve of ten simulations, using the best fit
arameters, is plotted in dark blue alongside the data in green. Our
est fit parameters are presented in Table 2. Although the same data
as used, some of our parameter estimates differ from those reported in
inilla et al. [37]. Our best fit 𝜏𝐼 is smaller than the 𝜏𝐼 = 49 h reported
y Pinilla et al. while our best fit 𝜏𝐸 is larger than the 𝜏𝐸 = 6.6 h found

by Pinilla et al. and the best fit 𝑐 is larger than 𝑐 = 0.13 h−1. Some of
his discrepancy might be due to the inclusion of spatial effects in the
BM, but Pinilla et al. also used more data — they used both a single
ycle and multiple cycle experiment as well as viral RNA measurements

to constrain the parameter estimates. All in all, the ABM/PDEM
ombo model can replicate the viral titer measurements of a typical
nfection via fitting where the fitting process uses standard packaged
itting algorithms and the computational time for fitting is less than
4 h from initial guess to best fit.
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Fig. 6. The time step was varied to test the convergence of the model in time. A time step of 0.005 h was chosen and a range around it was made by dividing or multiplying by
repeatedly. Seven values were used [0.000625, 0.00128, 0.0025, 0.005, 0.01, 0.02, 0.04]. The median curve of ten viral titer curves is shown for each time step. From left to

ight, curves of a viral infection exhibiting cell-free transmission initiated with infected cells; curves of a viral infection exhibiting cell-free transmission initiated with virus; and
urves of virus without underlying cell infection.
Fig. 7. The ten simulated titer curves and corresponding median curve are plotted in
blue. The experimental cell-free transmission data [37] is plotted in green. The median
curve has the minimal SSR with respect to the experimental data, when using the best
fit parameters. The best fit parameters are shown in Table 2.

4. Discussion

In this paper, we describe the construction of an ABM/PDEM combo
model that is accelerated by GPUs to investigate spatially extended
in-host viral infections. Before this work, in virology and epidemiol-
ogy, GPUs have only been used to accelerate population level ABM
models [46–48]. While other previous ABM/PDEM combo models of
viral spread [6,16] have explored in-host viral spread, these works only
utilized serial processing frameworks and therefore lack the computing
power to parameterize their models with accurate numbers of cells. The
formulation of the model here, as described in the methods, implements
GPUs and vastly improving the simulation speed of these models. This
allows for efficient replication of in vitro infections with a realistic
number of cells. This will help lead to a better understanding of virus-
cell dynamics in vitro [49], but could also help realize the goal of
simulating infections in vivo [50]. The faster simulations also allowed us
to use standard ODE model-fitting techniques to fit this model to exper-
imental data, making it possible to quickly parameterize these models
to reproduce dynamics of different viruses. This work should encourage
8

researchers to either directly implement GPUs in their modeling efforts
or utilize APIs and software like OpenACC, OpenMPI, and FLAME GPU
to decrease their computational time. Previously, researchers have had
to develop other techniques to help speed up fitting of ABMs to experi-
mental data, including reducing the sampled parameter space [51], and
mapping of ABM outputs to simpler functions [9,52]. These techniques
coupled with simulation of ABMs on GPUs could potentially allow for
real-time parameter estimation of models for use in patient care. This
is particularly useful for a novel pandemic virus that can be simulated
such that trial runs of test drugs can be performed and viral infection
severity for a patient can potentially be predicted.

Although our model currently only incorporates cell-free transmis-
sion, since the ABM models interactions of each cell in a culture dish,
the spatial aspects of different viral transmission routes can be explored
in detail. There has been recent interest in viruses that transmit via cell
to cell transmission, with ODE [53–55], stochastic [56], and ABM [49,
57] models developed to study how cell to cell transmission alters
infection dynamics. There are also viruses that cause cells that form
syncytia, which are cells that have fused into a single multi-nucleated
cell. Not much is known about how syncytia alter infection dynamics,
with a recent ODE model attempting to assess the effect of syncytia on
viral time course [58], but spatial effects really need to be included for
a proper assessment of the role of syncytia. Finally, advection can be
added to the diffusion of the virus particles to more closely mimic the
respiratory tract. Recent PDE [59] and ODE [60] models both indicate
that the addition of advection can limit the spread of respiratory viruses
towards the lower respiratory tract, but the stochasticity included in an
ABM might affect this result. Each of the model extensions mentioned
above can be easily added to the existing model by either adding,
respectively: a new if statement, a new array for specific information
for each cell, or a new term to the diffusion equation.

While the model is able to replicate a typical viral time course
during an infection, it is missing many components that play important
roles in the infection. For example, the immune response of the host has
not been added to the model. The immune response is a large, if not
the main, contributing factor to symptoms experienced during a viral
infection [61,62], but also limits spread of infection itself [63]. ABMs
are already used to model various aspects of the immune response [10,
64,65], so the immune response can be incorporated into the existing
ABM/PDEM combo framework. Cell tropism, the preference of virus for
one cell type over another, is another feature of viral infections that can
be incorporated into the ABM. ODE modeling indicates that cell tropism
can lead to longer lasting infections [66], but will also likely affect the
spatial dynamics of infection. Finally, variation in production of virus
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Table 3
A list of GPU specifications, assuming a memory usage of 100MB per
million cells.

GPU Memory (MB) # of cells per card

Quadro p400 2 2.0 × 107

Quadro p4000 8 8.0 × 107

Quadro rtx 8000 48 4.8 × 108

by individual cells [67] can be incorporated to determine how this type
of cell heterogeneity affects spatiotemporal infection dynamics.

Though attributes like syncytia formation, immune response, and an
even more detailed cell tropism representation are still to be added to
the current model, there is an ample amount of memory on a modern
standard GPU. The amount of memory that the proposed model uses
for 106 cells is 34MB. This means a GPU with 8GB of RAM running
he model could support 235 × 106 cells or ∼235 individual simulations

of in vitro experiments. In adding the above attributes to the model, the
model would use an additional 20MB, by likely over-estimating 8MB
or syncytia, 8MB for an immune response, and 4MB for further cell
ropism details. This results in an estimated memory usage of 54MB,
o for the same GPU with 8GB of RAM mentioned above, the GPU
ould support 148 × 106 cells or ∼148 individual simulations of in vitro
xperiments.

With the ever increasing computational needs of society and medi-
al care, hospitals will have many computers with a GPU already built
n. If we assume a future model might need 100MB of memory per one
illion cells, Table 3 shows that even a single Quadro p400 has enough
emory to simulate 20 × 106 cells or ∼20 individual 35mm simulations

f in vitro experiments. This means that even one of the smallest GPUs
hat Nvidia recommends (as of 2021) would have more than enough
pace for future growth. Continuing to think forward, a human respi-
atory model would need to simulate 4.0 × 108 cells [68] and therefore
ake up 40GB of memory on a GPU. Once in vivo simulations are im-
lemented, the Quadro rtx 8000 (a three year old GPU as of 2021) has
nough memory to simulate the human respiratory model. Therefore
PUs already have enough memory to store and run viral models of

his type. So as GPUs become more commonplace in computers and as
hey become more powerful, hospital and doctor office computers will
aturally have enough computing power to simulate individual viral
ourses for patient care.

. Conclusion

In this paper, we describe the use of GPUs to accelerate computation
f an agent-based and partial-differential equation model. This allows
or simulation results within hours, but with the necessary level of
etail to capture individual cell effects, and allows for parameterizing
he model quickly. The model in this work accurately replicates the dif-
usion of a virus, the stages of infection of individual cells, and can be fit
o data within hours. While still lacking some of the biology needed for
eplication of in vivo infections, the speed of computation leaves room
or incorporation of additional features. Because of the acceleration
ain from GPUs, this model implementation forms the foundation of a
odeling and simulation tool that can accurately predict in-host viral
ynamics and be quickly deployed to help combat the next pandemic.
urthermore, this work shows as an example to future researchers that
reat computation power is available, via desktop GPUs, without the
eed of a ‘‘super computer’’.
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