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Abstract: SARS-CoV-2 (Severe acute respiratory syndrome coronavirus 2) causes a variety of
responses in those who contract the virus, ranging from asymptomatic infections to acute respiratory
failure and death. While there are likely multiple mechanisms triggering severe disease, one potential
cause of severe disease is the size of the initial inoculum. For other respiratory diseases, larger initial
doses lead to more severe outcomes. We investigate whether there is a similar link for SARS-CoV-2
infections using the combination of an agent-based model (ABM) and a partial differential equation
model (PDM). We use the model to examine the viral time course for different sizes of initial inocula,
generating dose-response curves for peak viral load, time of viral peak, viral growth rate, infection
duration, and area under the viral titer curve. We find that large initial inocula lead to short infections,
but with higher viral titer peaks; and that smaller initial inocula lower the viral titer peak, but make
the infection last longer.
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1. Introduction

The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), originated
in Wuhan, China in late 2019 and rapidly spread around the world [1,2]. While the disease can lead
to severe illness needing long hospitalization [3–5], a significant fraction of those who contract the
virus are asymptomatic [6]. It is still not entirely clear who is at risk for developing severe disease,
although correlations of disease severity with levels of vitamin D [7], levels of various immune
components [8–11], and age [10,12] have been noted. There has also been investigation of the possibility
of disease severity being linked to initial viral inoculum [13–15].

There is some evidence from other respiratory viruses that the size of the initial inoculum could
play a role in the severity of the illness. An influenza epidemiological modeling study suggested that
a higher initial dose can lead to a higher mortality rate [16]. This is corroborated by an influenza in-host
modeling study that also found a correlation between the initial viral dose and survival rate [17].
Other modeling studies have found dependence of other measures of infection severity on initial
dose for influenza [18], respiratory syncytial virus [19], adenovirus [20], and porcine reproductive and
respiratory virus [21]. There are also experimental studies that find a link between dose and infection
severity. Experiments using influenza have found inoculum dose dependence of total number of
infected cells and area under the curve [22], peak viral titer [23–25], viral growth rate [23], and time
of viral peak [23,24]. Experiments with other viruses, such as adenovirus [26] and parainfluenza [27],
have also shown correlations between initial inoculum and various measures of disease severity.
If SARS-CoV-2 shows a similar pattern, initial inoculum should be considered as a possible contributor
to infection severity and adverse outcomes.
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The major route of transmission for SARS-CoV-2 is airborne droplets [28]. One study indicates
that sneezing and coughing creates a turbulent gas cloud that can cause viral-laden droplets to spread
up to 27 feet (7–8 m) [29], and allows the virus to get into the ventilation system of a building. A review
of literature on droplet and airborne viral spread concludes that 8 of 10 studies showed that droplets
spread further than the 6 foot [30] social distancing recommendation. While personal protective
equipment is helpful in reducing the ability of virus to enter the respiratory tract, it is not perfect [31].
All of these factors lead to exposures to vastly different quantities of virus when people are going
about their daily activities. Thus, it is important to understand whether different initial inocula lead to
different viral dynamics in patients.

Given the difficulty of examining SARS-CoV-2 inoculum dependence in patients, our study aims
to address the question of inoculum-dependence of SARS-CoV-2 infection severity using mathematical
modeling. We use the combination of agent-based model (ABM) and partial differential equation
model (PDM) to simulate SARS-CoV-2 infections initiated with different initial inocula. We measure
several features of the viral titer curve and find that increasing the initial inoculum leads to an early,
high, and narrow peak in the viral titer curve, while decreasing both the infection duration and area
under the curve.

2. Materials and Methods

2.1. Mathematical Model

We use an ABM to model transitions of cells as they go through the infection cycle. We use
a hexagonal grid and simulate 106 cells in a circular dish to mimic an in-vitro system. Cells begin as
healthy target cells that can be infected by viruses that are sitting above them. Once infected, the cells
move into an eclipse phase where they are not yet actively producing virus. The cells remain in the
eclipse phase for a time chosen from an Erlang distribution with mean time τE and shape parameter
nE. The cells then pass into the infectious phase, where they are actively producing virus, for a time
chosen from an Erlang distribution with mean time τI and shape nI , after which time the cells die
and no longer participate in the infection. Erlang distributions are used for both transitions based on
experiments that show the time spent in the eclipse phase and the time spent in the infectious phase
are best described by Erlang distributions [32,33]—at least for SHIV (simian-human immunodeficiency
virus). While SHIV is a different virus, it is the only virus for which these distributions have been
measured directly. Influenza, another respiratory virus, has also been shown to need nonexponential
transition distributions [34,35].

Viral dynamics are described by the PDM as virus diffuses over the layer of cells,

∂V
∂t

= D∇2V + p− cV,

where D is the diffusion coefficient and c is the viral decay rate. Virus is produced by infectious cells at
rate p and is assumed to be released directly above each infected cell. The amount of virus above any
cell determines the probability that the cell will be infected, Pinf = βV, where Pinf is the probability
per unit time, and β is the infection rate. A more detailed description of the model is given in the
supplementary material, and the simulation code is available on https://github.com/BaylorFain/
Covid19-Code.

Parameter values that describe SARS-CoV-2 are taken from a variety of sources and are given in
Table 1. The majority of the parameters are taken from [36], where an ordinary differential equation
model of coronavirus infection was fit to viral titer data from a single patient. Note that the parameters
β and p are scaled to account for the different numbers of cells (106 here and 1 in [36]) in the two systems
as well as converting viral concentration to individual virions (see [37–39] for detailed discussions
on converting from concentration to virions). The shape parameters are based on values derived
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from influenza infections [40], since the Erlang distribution has not yet been used for SARS-CoV-2.
The diffusion coefficient was calculated using the Stokes–Einstein equation [41].

Table 1. Parameter values to simulate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection with the agent-based model (ABM)/partial differential equation model (PDM) model.

Parameter Meaning Value

β a Infection rate 84.0/h
τE

b Mean eclipse duration 5.88 h
nE

c Eclipse shape parameter 30
τI

b Mean infectious lifespan 0.624 h
nI

c Infectious shape parameter 100
p a Viral production rate 19,900/h
c b Viral clearance rate 0.00490/h
D d Diffusion coefficient 4.80× 10−12 m2/s

a Parameters taken from [36], but scaled. b Parameters taken from [36]. c Parameters taken from [40]. d Parameter
calculated from Stokes–Einstein equation.

2.2. Measurements

We simulate SARS-CoV-2 infections starting with different multiplicity of infection (MOI), where
the MOI value defines the initial number of infected cells. The ABM/PDM model is implemented
in Compute Unified Device Architecture (CUDA) and run on NVIDIA graphics processing units.
We perform 100 simulated infections for each MOI and measure the following features of the viral titer
curve (Figure 1):

• Peak viral load: The maximum amount of virus is commonly used as an indicator of the
transmissibility of an infection [42].

• Time of viral peak: This is the time between the start of the infection and the peak of the virus
and can give an indication of how quickly the virus is replicating.

• Viral upslope: Viral upslope is the exponential growth rate of the viral titer before the peak is
reached and is another indication of how quickly the virus is spreading from cell to cell.

• Area under the curve (AUC): AUC is often used to assess the severity of an infection [43,44].
• Infection duration: The infection duration is indicative of how long an infected patient might

test positive for presence of the virus. Note that the threshold used here is 107 virions based
on a 102 RNA copies/ml detection threshold for the experimental data [45] that is converted to
individual virions.
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Figure 1. Characteristics of the viral titer curve that are used to assess severity of the infection.
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3. Results

Figure 2 shows the viral titer curves for different multiplicity of infection (MOI) of SARS-CoV-2,
where the darker line for each color shows the curve of median values and the lighter colored lines
are the 100 individual simulations. Note that for most MOI, there is very little variation between
simulations once the viral titer is large. The exception is the lowest MOI of 10−5 where there is more
variation in the exact trajectory of the viral load. We see some obvious shifts in the viral titer curve as
the MOI increases. For high MOI, the viral titer curve reaches its peak very quickly, with lower MOIs
moving the peak farther out in time. The peak also becomes broader and lower as the MOI becomes
lower, suggesting longer infection durations, but with lower viral loads.
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Figure 2. Viral loads for infections initiated with different multiplicity of infection (MOI). Dark lines
of each color indicate the viral load curve using the median of 100 simulations, while the lighter
colored lines show the viral load kinetics for each individual simulation. The dashed line indicates the
threshold of detection used to calculate infection duration.

For a more quantitative assessment, we measure the characteristics described in Methods.
The results are shown in Figure 3, which shows peak viral load (top-left), time of viral peak (top-right),
viral upslope (center-left), area under the curve (AUC) (center-right), and infection duration (bottom)
as functions of the MOI. The peak viral load increases with increasing initial inoculum, but it appears to
reach a plateau as we near an MOI of 1. The time of peak, on the other hand, decreases with increasing
initial inoculum, reaching a fixed small value at high MOI. There are real plateaus here, since each cell
will produce an average of pτI viral particles. At an MOI of 1, all cells are initially infected and will
start producing virus at about the same time, meaning all of the virus is released almost simultaneously
and there is no second cycle of infection. At slightly lower MOIs, most cells are initially infected,
but some cells will be infected in a second or third cycle of infection, reducing the large burst of virus
at one time, which causes a delay, reduction, and broadening in the peak. The upslope, or growth
rate, of the viral titer curve increases as the MOI increases. This is also driven by the larger amount of
virus being produced in the first cycle of infection as the MOI increases. Finally, the AUC and infection
duration both decrease as the initial inoculum increases.
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Figure 3. Effect of initial inoculum on viral titer characteristics. The graphs show peak viral load
(top-left), time of viral peak (top-right), viral upslope (center-left), area under the curve (AUC)
(center-right), and infection duration (bottom) as functions of MOI.

4. Discussion

Our study finds that initial viral inoculum does alter the viral time course by increasing the
peak viral load, moving the peak earlier, increasing the viral upslope, and decreasing both AUC and
infection duration, as the initial inoculum increases. It is not immediately clear what these changes in
viral kinetics mean for the severity of the infection. Is it better to have a shorter infection, albeit with
a higher viral peak; or a longer-lasting infection with a lower viral burden? One study compared viral
loads in patients with mild and severe illness and found that the viral load time course in mild cases
peaked earlier and at a lower peak viral load than in severe cases, although both time courses still
had rather high viral loads at 25 days post symptom onset [46]. Since viral load in these patients was
measured after they presented at a hospital, there is also no way to link particular features of the viral
time course to the initial inoculum. Other observational studies that have attempted to investigate
links between viral load and disease severity have taken a limited number of viral load measurements,
often well after the peak of the infection [8,47,48], making it impossible to assess the full time course
of the viral load and any correlations to initial inoculum. An alternative to observational studies in
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patients is to investigate inoculum dose-response of SARS-CoV-2 in animals, as suggested in [13].
Such animal studies in conjunction with mathematical modeling studies will help provide a clearer
picture of the role of initial inoculum in determining viral time course and disease severity.

We find infection durations ranging from 37–73 days. Studies suggest that median duration of
viral shedding is 14–20 days after symptom onset, with some patients shedding virus for more than
30 days after symptom onset [49–52]. One Italian study found a longer median shedding duration of
36 days after symptom onset [53]. There are, however, cases of patients who have shed virus for longer
periods of time, with several case studies finding patients who shed virus for more than 60 days after
hospitalization [47,54,55]. In some studies, longer duration of viral shedding is associated with more
serious clinical outcomes such as ICU admission or invasive ventilation [52,56], although other studies
have noted that asymptomatic patients also seem to shed virus for longer than mildly symptomatic
patients [57].

Our findings indicating a decrease in AUC, but an increase in viral peak as MOI increases could be
viewed as contradictory since both peak viral load and AUC are supposed to be indicators of disease
severity. However, disease severity is often ill-defined. One study has shown a correlation between
viral load and total symptom score [58], and another between nasal discharge and viral load [59] for
influenza. This implies that a higher peak viral load should lead to higher symptom score, at least
around the time of viral peak. Clinical studies, however, tend to use area under the viral curve as
an endpoint in studies as an indicator of disease severity [60–63], perhaps in an attempt to combine both
the severity of symptoms and the duration over which symptoms are experienced. This leads back to
the question of whether severity should be assessed by the worst period of symptoms, even it is only for
a short duration; or whether disease severity should be assessed by milder, but sustained, symptoms.

Viral load on its own is not the only cause of the symptoms experienced by patients. The immune
response is thought to underlie many of the symptoms that cause patient discomfort [64] and medical
complications [65] for other respiratory viruses. A study using the coronavirus that causes Middle
East respiratory syndrome found that high viral load was correlated to high levels of inflammatory
cytokines that are, in turn, linked to higher mortality [66]. Several studies have also hypothesized
a connection between intensity of the immune response and severe disease for SARS-CoV-2 [67–69].
For other respiratory infections, there are several studies that have linked the size of viral inoculum to
variations in various components of the immune response [21,70–73]. Another study links area under
neutrophils curve and area under IL-8 curve to symptom severity in respiratory tract infections [74].
Unfortunately, our model does not include an immune response, and so we cannot investigate how
immune response might vary with initial inoculum dose and affect the severity of the infection. While
mathematical models that include immune responses [75] and symptoms [17,76] have been examined
for other respiratory viral infections, there is currently not enough time course data on SARS-CoV-2
immune responses to properly assess the validity of these models for the novel coronavirus.

There are other factors that affect whether a large exposure will lead to severe infection.
Simulations show that the site of deposition within the respiratory tract affects not only whether
an infection takes hold, but also how easily the virus will replicate [77]. Like other respiratory
viruses, SARS-CoV-2 tends to result in more severe infections when it manages to extend to the lower
respiratory tract [78]. The ability to spread to the lower respiratory tract seems to be related to mucosal
velocity within the respiratory tract [79,80], and not directly to viral replication, so this is yet another
factor that needs to be considered in determining the severity of the infection. Since our model does
not spatially reproduce the respiratory tract, we also cannot assess how these factors might alter our
predictions of viral time course.

The model used here is fairly generic and simulates SARS-CoV-2 only through choice of
parameters. However, the effect of initial inoculum on viral titer has not previously been examined
in an ABM of viral dynamics. Previous studies using ordinary differential equation (ODE) models
suggest that model structure and underlying assumptions change the predicted dose-response [19,20].
Interestingly, the ABM is target-cell limited, and draws its parameter values from a fit of a target-cell
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limited model to SARS-CoV-2 data, but the dose-response trends observed here are quite different
from the dose-response trends observed with a traditional target-cell-limited ODE model [19,20].
For example, in the target-cell-limited ODE, viral titer peak and growth rate do not change with initial
inoculum [19,20], but the ABM predicts an increase in both. Time of viral peak and infection duration
trends for the ABM are similar to those predicted by target-cell-limited ODEs [19,20].

Despite the limitations of our model, our study found that initial inoculum dose changes the viral
time course and that many characteristic features of the viral titer curve change monotonically with
the inoculum size. Future studies are needed to extend these results to symptom severity and changes
in the immune response to SARS-CoV-2.

Supplementary Materials: The following are available online at http://www.mdpi.com/2673-3986/1/1/3/s1,
more details of the model used in the study are presented in this Supplementary Materials.
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