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Abstract

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐
2) has rapidly spread around the world, causing serious illness and death and

creating a heavy burden on the healthcare systems of many countries. Since the

virus first emerged in late November 2019, its spread has coincided with peak

circulation of several seasonal respiratory viruses, yet some studies have noted

limited coinfections between SARS‐CoV‐2 and other viruses. We use a mathematical

model of viral coinfection to study SARS‐CoV‐2 coinfections, finding that SARS‐CoV‐
2 replication is easily suppressed by many common respiratory viruses. According to

our model, this suppression is because SARS‐CoV‐2 has a lower growth rate (1.8 /d)

than the other viruses examined in this study. The suppression of SARS‐CoV‐2 by

other pathogens could have implications for the timing and severity of a sec-

ond wave.
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1 | INTRODUCTION

In the last couple of months of 2020, a novel coronavirus emerged from

Wuhan, China and started spreading rapidly around the world.1 The virus

causes an illness called coronavirus disease (COVID‐19) that can result in

severe pneumonia and death.2,3 The ease of transmission of the virus has

led to a global pandemic, with COVID‐19 cases being found in nearly

every country in the world.4,5 As countries struggle to get the current

wave of outbreaks under control,6,7 there is mounting worry over the

possibility of a second wave in the fall or winter of 2020,8,9 possibly

coupled with outbreaks of other seasonal respiratory infections, that

could overwhelm healthcare systems in many countries.10

Before the advent of severe acute respiratory syndrome cor-

onavirus 2 (SARS‐CoV‐2), many studies found respiratory viral co-

infection rates of about 40% in patients presenting with influenza‐
like illness.11‐15 It seems likely, then, that if SARS‐CoV‐2 cocirculates

with other respiratory viruses, we will also see coinfections that in-

clude SARS‐CoV‐2. However, recent studies found fewer coinfections

than expected in adults infected with SARS‐CoV‐2,16‐20 although

pediatric patients were found to have a 40% rate of SARS‐CoV‐2
coinfection with other respiratory viruses.21 It is also unclear if these

coinfections lead to more severe disease, with one study of SARS‐
CoV‐2/influenza coinfections indicating no worse clinical outcome in

these patients,22 another study indicating SARS‐CoV‐2/influenza
coinfections lowered mortality,23 and a third study suggesting higher

mortality for patients with SARS‐CoV‐2 coinfections.24 Thus there is

a need to understand how SARS‐CoV‐2 interacts with other re-

spiratory viruses within a host.

There are really only two possible reasons why there are fewer

SARS‐CoV‐2 coinfections—either SARS‐CoV‐2 is suppressing re-

plication of most other respiratory viruses or SARS‐CoV‐2 replication

is suppressed by the presence of other viruses. We attempt to de-

termine which of these scenarios is occurring through the use of

mathematical models. Mathematical models have long been used to

improve our understanding of respiratory viral infections25 and to

study different aspects of within‐host dynamics of viral infections,

such as drug treatment26,27 and resistance,28‐30 the role of the im-

mune response,31,32 and coinfections.33‐35 Our previous study using
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mathematical models of coinfections indicated that viruses with a

faster growth rate will suppress viruses with a slower growth rate,33

a dynamic that might provide insight into SARS‐CoV‐2 coinfections

with other respiratory viruses.

In this paper, we use our previously published model of viral

coinfections33 to explore SARS‐CoV‐2 coinfections with influenza A

virus (IAV), respiratory syncytial virus (RSV), human rhinovirus (hRV),

parainfluenza virus (PIV), and human metapneumovirus (hMPV). We

find that SARS‐CoV‐2 has a lower growth rate than all of these

viruses, and so is suppressed if the infections start simultaneously. If,

however, the second infection is initiated some time after the SARS‐
CoV‐2 infection is established, the suppression is somewhat miti-

gated and a coinfection can be detected.

2 | METHODS

2.1 | Mathematical modeling

We use a previously published model of viral coinfections,33
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In the model, two viruses, V1 and V2, compete for a single type of

target cell, T, infecting the cells at rates β1 and β2. Once infected, the

target cells move into the eclipse phase (E1 and E2) wherein the virus

is replicating within the cell, but not yet being released. After times

1/k1 and 1/k2, the cells become productively infectious (I1 and I2) and

after times δ/1 1 and δ/1 2, the infectious cells die. Virus is produced by

the infectious cells at rates p1 and p2 and decays at rates c1 and c2.

Simulations of the model are performed using the lsode differential

equation solver in Octave.

2.2 | Parameter values

To find parameters describing the SARS‐CoV‐2 infection, we fit viral

load measurements from Patient 8 of the data used in Gonçalves

et al.36 This patient was chosen because the data from that patient

has some viral load measurements before the viral peak, so we can

get an estimate of the viral growth rate in the patient. We fit the

patient data using a single virus model. Fitting is done by minimizing

the sum of squared residuals using the Nelder–Mead algorithm im-

plemented in Octave. The initial number of target cells is fixed to 1

and the initial viral load is fixed to 10−3 copies/mL, as in Gonçalves

et al.36 Confidence intervals (CIs) are found by fitting 1000 bootstrap

replicates. Parameters for the remaining viruses (IAV, RSV, hRV, PIV,

and hMPV) were estimated in Pinky and Dobrovolny33 and are given

in Table 1.

3 | RESULTS

3.1 | Parameterizing SARS‐CoV‐2 infection

The single virus model fit to the patient data, along with the best

fit parameters is given in Figure 1. It is difficult to compare

parameters containing viral units between different experiments,

but we can assess the reasonableness of our fit using some cal-

culated values. The infecting time, tinf, represents the average

time between the virus leaving one cell and infecting the next and

is given be β= /t p2inf . We find an infecting time of 3.2 hours

(0.054‐8.7 hours, 95% CI), which is shorter than the infecting

times found in Hernandez–Vargas and Velasco–Hernandez37 of

16 to 61 hours found in a study of SARS‐CoV‐2 in humans, but

longer than the infecting times of 1 to 2 hours found in a study

of SARS‐CoV‐2 infections in rhesus macaques.38 The basic

reproduction number, given by β δ= /R p c0 for this model, is cal-

culated to be 25 (12‐400, 95% CI) for this patient. This is higher

than the R0 estimates of 2 to 11 found by Hernandez–Vargas and

Velasco–Hernandez37 in humans, but within the range of 12 to 69

found for rhesus macaques.38

3.2 | SARS‐CoV‐2 coinfections

We use the parameters found for SARS‐CoV‐2 in the previous sec-

tion along with the parameters for other respiratory viruses found in

a previous study to predict the dynamics of coinfections involving

SARS‐CoV‐2 and other pathogens. We wish to initiate both infections

TABLE 1 Parameter values for respiratory infections

Virus

β [(TCID50/

mL)−1 d−1] k [/d]

p

[(TCID50/mL) d−1] δ [/d] c [/d]

IAV 2.85 × 10−7 4.20 3.47 × 109 4.20 4.03

RSV 2.70 × 10−5 1.27 8.71 × 106 1.27 1.27

hRV 5.16 × 10−4 0.937 3.24 × 107 50.5 0.920

PIV 1.74 × 10−8 13.2 5.87 × 109 13.2 0.567

hMPV 3.00 × 10−3 0.957 4.74 × 106 29.4 26.2

Abbreviations: hMPV, human metapneumovirus; hRV, human rhinovirus;

IAV, influenza A virus; PIV, parainfluenza virus; RSV, respiratory syncytial

virus.
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with the same amount of virus ( ( ) =V 0 1i ), so the parameters β and p

are scaled to account for the change in initial viral load. While this is

clearly an idealization, and not likely to happen, we first study co-

infection dynamics when the viruses are given equivalent starting

conditions; differences in initial inocula and starting times are ex-

amined in the next sections. Model predictions are shown in Figure 2,

where dash‐dot lines show single infections with each of the viruses

and solid lines giving the predicted coinfection time courses. It is

clear that SARS‐CoV‐2 is suppressed, at least to some extent by each

of the other viruses. The least suppression is caused by PIV, where

peak viral load is decreased by four orders of magnitude. The re-

maining viruses keep the level of SARS‐CoV‐2 at very low levels. The

SARS‐CoV‐2 peak is also shifted much earlier, from 10 days to 4 days

when in coinfection with PIV, and to less than 2 days during coin-

fections with the remaining viruses. Note that the common re-

spiratory viruses are completely unaffected by the presence of SARS‐
CoV‐2. The difference in growth rate between SARS‐CoV‐2 and

these viruses is such that, even for PIV—the slowest‐growing virus—

they can replicate just as easily as if the SARS‐CoV‐2 were not there.

In our previous study on modeling of coinfections,33 we determined

that one virus can suppress another if the growth rate of one virus is

larger than the other. Using the approximation derived in Smith et al,39

we find the growth rate of SARS‐CoV‐2 is 1.8 /d (1.6‐10/d, 95% CI). This

growth rate is small compared to the growth rates previously found for

the other respiratory viruses: 11.9 /d for influenza virus, 5.4 /d for RSV,

13.6 /d for rhinovirus, 4.0 /d for parainfluenza virus, and 9.1 /d for

hMPV. This suggests that SARS‐CoV‐2 can be easily suppressed by

many seasonal respiratory viruses.

3.3 | Delayed secondary infection

If SARS‐CoV‐2 is so easily suppressed, how is it that we see any

coinfections involving SARS‐CoV‐2 at all? Our previous study showed

that the disadvantage of having a slow growth rate could be over-

come by having a head start.33 A study of SARS‐CoV‐2 coinfections

has suggested that this might be the case, finding more coinfections

that start after the SARS‐CoV‐2 infection has been established.40 We

explored this possibility by starting with the SARS‐CoV‐2 infection

alone, then starting a second infection with another virus at 1, 5, or

10 days. The predicted dynamics are shown in Figure 3 with solid

lines showing coinfection dynamics when the second virus is

introduced on day 1, dashed lines showing dynamics when it is

introduced on day 5, and dotted lines when it is introduced on day

10. When the second virus is introduced on day 1, the dynamics are

similar to simultaneous infection with SARS‐CoV‐2 replication largely

suppressed. When the second virus is introduced on day 5, SARS‐
CoV‐2 viral load is able to rise to much higher levels, but not to the

same level as in a single infection. We also see that the secondary

infection curve remains similar to its single infection curve. If the

secondary infection is introduced on day 10, near the peak of SARS‐
CoV‐2, the second infection cannot take hold since SARS‐CoV‐2 has

already infected the majority of cells at that point. Thus there seems

to be a “sweet spot” for introduction of the second virus to detect a

coinfection—introduce the second virus too early, and SARS‐CoV‐2 is

suppressed; introduce it too late, and the second virus is suppressed.

3.4 | Increased SARS‐CoV‐2 dose

An alternative possibility for the presence of detectable coinfections

with SARS‐CoV‐2 is that the viruses do not start with the same initial

viral inoculum. Our previous study suggests that slower growing

viruses can overcome suppression if there is a difference in initial

viral inocula.33 We explored this possibility for SARS‐CoV‐2 coin-

fections by starting the coinfections with 102, 104, or 106 times more

SARS‐CoV‐2 than the second virus. The results are shown in Figure 4.

Interestingly, even at SARS‐CoV‐2 initial doses 106 times larger than

the initial inoculum of the second virus, we see little replication of

SARS‐CoV‐2 in that the peak of the SARS‐CoV‐2 infection does not

rise much above the initial dose. The peak also occurs much earlier

for SARS‐CoV‐2 during these coinfections than when SARS‐CoV‐2
infection occurs alone, also suggesting limited SARS‐CoV‐2 replica-

tion. We see very little suppression of the second virus even at the

highest dose differential, with the exception of coinfection with PIV

where the highest initial inoculum of SARS‐CoV‐2 results in a

105 reduction in the peak PIV viral load. Despite the fact that

SARS‐CoV‐2 replication is still largely suppressed in these coinfec-

tions, coinfections will be detected since the SARS‐CoV‐2 viral load is

high and decays slowly.

4 | DISCUSSION

Our main finding is that SARS‐CoV‐2 has a lower growth rate than

other respiratory viruses we have examined. According to our model,

then, SARS‐CoV‐2 infections are easily suppressed when initiated

simultaneously or after infection with another respiratory virus. This

finding could explain why SARS‐CoV‐2 coinfections are less common

than other respiratory coinfections.16‐20 If the secondary infection is

initiated after the SARS‐CoV‐2 infection, the suppression can be

F IGURE 1 Experimental data and single virus model best fits for a
patient infected with severe acute respiratory syndrome coronavirus 2
(SARS‐CoV‐2). Best fit parameters are given in the table
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somewhat mitigated, consistent with the findings of Zhu et al,40 who

found that many SARS‐CoV‐2 coinfections occur when a second re-

spiratory pathogen takes hold in someone already infected with

SARS‐CoV‐2. A larger initial inoculum of SARS‐CoV‐2, however, does

not allow SARS‐CoV‐2 to overcome the competitive disadvantage in

most cases, and SARS‐CoV‐2 replication is still limited, although the

viral load remains high for a long period of time.

This has implications for the potential of a second wave of SARS‐
CoV‐2.41‐43 If the second wave occurs while other seasonal

respiratory infections are circulating, there might be a protective

effect where people infected with influenza, RSV, or the common

cold are less susceptible to infection with SARS‐CoV‐2 infection or

perhaps will get a milder form of the infection. There also appears to

have been a lag in spread of SARS‐CoV‐2 infections in America and

F IGURE 2 SARS‐CoV‐2 coinfections with other respiratory viruses: (top left) influenza, (top right) respiratory syncytial virus (RSV), (center
left) rhinovirus, (center right) parainfluenza virus (PIV), (bottom) human metapneumovirus (hMPV). Dash‐dot lines are each of the viruses in a
single infection while solid lines predict the dynamics of the coinfection. The dashed black line indicates a typical threshold of detection
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Europe, with newly discovered cases of people who died of COVID‐
19, likely acquired through community transmission, in both France

and California,44,45 much earlier than the first officially recorded

COVID deaths in either location. This suggests that the virus was

circulating, but not spreading very rapidly early on. Since influenza

and other respiratory viruses were also circulating at the same time,

our study suggests the possibility that SARS‐CoV‐2 might have had

trouble spreading due to the presence of these other viruses.

Our findings also have implications for treatment of these

diseases—using antivirals to shorten the duration of influenza, for

example, might then leave a patient susceptible to SARS‐CoV‐2, or
worse yet, might allow a SARS‐CoV‐2 coinfection that is already

present to grow unfettered. It would be prudent to consider testing

all patients presenting with influenza‐like illness for a variety of re-

spiratory pathogens along with SARS‐CoV‐2 to make the most in-

formed decision regarding treatment.19,46

While the growth rate calculated here suggests that SARS‐
CoV‐2 should be outcompeted by many other common respiratory

viruses, it was based on fits to data from a single patient. There can

be substantial sources of error in viral load measurements taken

from nasal swabs47 and in this case, the growth phase of the curve

consists of only three or four points with data collection starting

only on day 8. While caution should be taken in extrapolating too

much from single patient measurements, there are other indica-

tions that the growth rate of SARS‐CoV‐2 might be slow. The in-

cubation period of the virus is estimated to be a median of ∼5 to 7

days,48‐51 although some patients have shown incubation periods

lasting 12 days or longer.48,49 This is compared to an estimated 1.4

days incubation period for influenza,52,53 1 day for rhinovirus,54

4.4 days for RSV,53 and 2.6 days for PIV,53 so the slow growth rate

calculated for this particular patient does not seem unreasonable.

Viral load measurements taken earlier in the infection will improve

F IGURE 3 Delayed SARS‐CoV‐2 coinfections with other respiratory viruses: (top left) influenza, (top right) RSV, (center left) rhinovirus,

(center right) PIV, (bottom) hMPV. Solid lines show the viral time courses when the second virus is introduced 1 day after SARS‐CoV‐2 infection.
Dashed lines show the time courses when the second virus is introduced 5 days after SARS‐CoV‐2 infection and dotted lines show the time
courses when the second virus is introduced 10 days after SARS‐CoV‐2 infection. hMPV, human metapneumovirus; PIV, parainfluenza virus;

RSV, respiratory syncytial virus; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
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the estimate of the growth rate. Data will also need to be taken

from more patients to understand the variability in growth rates in

different patients.

We must also keep in mind that the model used here is a highly

simplified model. The only interaction between the viruses is through

competition for the single resource of target cells, so whichever virus

grabs the target cells first will be able to replicate while the losing virus

has its replication suppressed. In the real respiratory tract, there are

many more possible interactions that could change the outcome of the

infection. If the two viruses can both infect the same cell, this sharing of

target cells allows both viruses to coexist.35 There is also the possibility

that the viruses have preferences for different types of cells in the re-

spiratory tract,55‐58 in which case, the competition for resources is not

the major driver of coinfection dynamics. Finally, studies have shown

that in vivo, the immune response plays a role in interactions between

coinfecting viruses,59‐61 changing the expression and availability of re-

ceptors and host or viral factors needed for replication. The angiotensin‐
converting enzyme 2 (ACE2) has been shown to be crucial for replication

of SARS‐CoV‐2.62,63 Then, a possible mechanism of suppression is

through interaction of the other respiratory viruses with ACE2—

influenza, for example, has been shown to downregulate ACE2.64 Un-

fortunately, it has been difficult to incorporate immune responses into

viral kinetics models due to the limited data,31 particularly for some of

the viruses examined here where there is little data concerning the

immune response even during single infections.

Even with these limitations, we believe our model provides a

possible explanation for the unexpectedly low number of coinfec-

tions involving SARS‐CoV‐2 observed in several studies. More de-

tailed measurements of viral growth rate in more patients will be

necessary to assess how easily SARS‐CoV‐2 can be suppressed by

other viruses and whether cocirculation with other respiratory

viruses might help slow or minimize a second wave.

ORCID
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Hana M. Dobrovolny http://orcid.org/0000-0003-3592-6770

F IGURE 4 The effect of an increased SARS‐CoV‐2 initial inoculum during coinfection with other viruses: (top left) influenza, (top right) RSV,
(center left) rhinovirus, (center right) PIV, (bottom) hMPV. Solid lines show the viral time courses when SARS‐CoV‐2 has an initial dose 100 times
larger than the second virus; dashed lines show the time courses when SARS‐CoV‐2 has an initial inocolum 104 times larger than the second virus;

and dotted lines show the time courses when SARS‐CoV‐2 has an initial inoculum 106 times larger than the second virus. hMPV, human
metapneumovirus; PIV, parainfluenza virus; RSV, respiratory syncytial virus; SARS‐CoV‐2, severe acute respiratory syndrome coronavirus 2
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