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Abstract
Respiratory syncytial virus can lead to serious lower respiratory infection (LRI), partic-
ularly in children and the elderly. LRI can cause longer infections, lingering respiratory
problems, and higher incidence of hospitalization. In this paper, we use a simplified
ordinary differential equation model of viral dynamics to study the role of transport
mechanisms in the occurrence of LRI. Our model uses two compartments to simulate
the upper respiratory tract and the lower respiratory tract (LRT) and assumes two dis-
tinct types of viral transfer between the two compartments: diffusion and advection.
We find that a range of diffusion and advection values lead to long-lasting infections
in the LRT, elucidating a possible mechanism for the severe LRI infections observed
in humans.

Keywords Respiratory syncytial virus · Mathematical model · Diffusion ·
Advection · Lower respiratory infection

Mathematics Subject Classification 92C99

1 Introduction

The disease burden from respiratory syncytial virus (RSV) can be substantial, causing
death and hospitalization in infants (Geoghegan et al. 2017) and the elderly (Fleming
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et al. 2015). However, RSV causes only mild infections in healthy adults (Hall et al.
2001; Lee et al. 2004; Bagga et al. 2013; Mills et al. 1971). One possible reason for
some of the difference in disease severity is themore frequent involvement of the lower
respiratory tract (LRT) during infections in infants and the elderly (Naorat et al. 2013;
Kaneko et al. 2001; Shi et al. 2015; Atwell et al. 2016; Hall et al. 2001; Takeyama
et al. 2016; Park et al. 2017).

In fact, RSV is the most common cause of acute lower respiratory infection (LRI)
in small children (Nair et al. 2010; Forster et al. 2004) and leads to long-term changes
in lung function (Hosakote et al. 2016; Guerrero-Plata et al. 2009; Mejias et al. 2008;
Zeng et al. 2011) which leads to lingering respiratory problems (Poulsen et al. 2006;
Fauroux et al. 2017; Palmer et al. 2010;Backman et al. 2014). Specifically, studies have
found increased wheezing in children who have experienced RSV-induced LRI (Bont
et al. 2004; Fauroux et al. 2017) lasting up to 5years. More worryingly, there appears
to be an increase in cases of asthma among children who have had RSV-induced LRI
(Piedimonte 2013; Perez-Yarza et al. 2007; Zeng et al. 2011). LRI in older adults is
linked to a higher incidence of life-threatening infections requiring ventilation and
ICU admission (Park et al. 2017; Branche and Falsey 2015; Lee et al. 2015). It also
causes serious illness and death in immunocompromised adults (Robert et al. 2008;
Ebbert and Limper 2005).

Studies have found that there are differences in spread of RSV infection between the
upper respiratory tract (URT) and the lower respiratory tract (Kim et al. 2016; Grieves
et al. 2015; Walpita et al. 2015). One possible cause of these differences is different
immune responses in the URT and LRT (Everard et al. 1994; Plotnicky-Gilquin et al.
2000; Sealy et al. 2017). However, there also appear to be fundamental differences in
virus-cell interactions in cells taken from theURT and the LRT (Guo-Parke et al. 2013;
Spann et al. 2014) that can also lead to altered disease spread in the URT and LRT.
A better understanding of how the disease spreads within each part of the respiratory
tract and how it spreads from URT to LRT could help prevent more severe disease.

Mathematical modeling is one technique that can help develop a better understand-
ing of some of the biological processes that contribute to dynamics of viral infections.
While spatial spread of infections is sometimes studied using computationally expen-
sive agent-basedmodels (Goyal andMurray 2016; Beauchemin et al. 2005; dos Santos
and Coutinho 2001; Strain et al. 2002; Gallagher et al. 2018), insight into mechanisms
of viral spread can also be gleaned from simpler differential equation models (Allen
and Schwartz 2015; Wang et al. 2017; Frank 2000; Reperant et al. 2012). Unfortu-
nately, these models rarely examine the role of viral transport mechanisms. There
are two viral transport mechanisms in the respiratory tract, diffusion and advection.
Diffusion moves virus from regions of high concentration to regions of low concentra-
tion. Advection is caused by the mucociliary escalator that moves at roughly constant
velocity and can sweep virions towards the top of the respiratory tract (Murphy and
Florman 1983). Some mathematical models have explored the role of diffusion in the
spread of influenza virus (Bocharov et al. 2016; Holder et al. 2011a, b) finding that
the rate of diffusion plays a role in formation of plaques in vitro (Holder et al. 2011a),
determines how quickly plaques grow (Holder et al. 2011b), and determines the sta-
bility of traveling waves of infection (Bocharov et al. 2016). While diffusion is the
dominant transport process in vitro, advection within mucociliary flow also transports
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viruses in the respiratory tract (Kesimer et al. 2013). Mucociliary flow drives inhaled
virus particles upward (Anekal et al. 2009), helping to prevent spread to the LRT
(Vareille et al. 2011). It is not yet clear how the two transport mechanisms interact to
either allow or prevent LRI.

In this paper, we propose a differential equation model for RSV that tracks viral
dynamics in both the URT and the LRT. In the model, virus travels between the URT
and LRT via two mechanisms: diffusion allows the virus to travel in either direction,
and advection, upwardmotion of virus driven by themucociliary escalator, drives virus
from the LRT to the URT. We fit the model to data from RSV infections in ferrets,
finding that advection is the stronger transport mechanism in these animals. We then
fit the model to data from pediatric patients to estimate the probability that the LRT is
involved in the infection.

2 Methods

2.1 Mathematical model

We propose a two-compartment model based on the viral kinetics model presented
in Baccam et al. (2006). While the model in Baccam et al. (2006) was proposed
for influenza, it is applicable to other respiratory viral infections including RSV
(González-Parra and Dobrovolny 2018a) due to the similarity in infection dynamics.
The model has two compartments, one representing the URT, the second representing
the LRT.Within each compartment, infection dynamics are modeled with an exponen-
tial viral kinetics model. Virus can move between the two compartments by one of two
methods: diffusion which moves virus from areas of higher concentration to areas of
lower concentration, and advection which represents virus transport via the mucocil-
iary escalator which moves virus upwards only. The model equations are as follows:

Target cells: dTU
dt = −βUTUVU

dTL
dt = −βLTLVL

Eclipse cells: dEU
dt = βUTUVU − kU EU

dEL
dt = βLTLVL − kL EL

Infectious cells: dIU
dt = kU EU − δU IU

dIL
dt = kL EL − δL IL

Virus: dVU
dt = pU IU − D(VU − VL) dVL

dt = pL IL + D(VU − VL)

−UVU + νVL − cLVL − νVL

(1)

TheU subscript represents the URT while the L subscript represents the LRT. Within
each compartment, target cells Ti (where i = U , L) are infected by virus Vi at a rate
βi . Once infected, the cells enter an eclipse phase Ei where the cells are not actively
producing virus. After an average time 1/ki , the cells start producing virus and enter
the infectious phase Ii . They remain in this phase for an average time 1/δi and produce
virions at a rate pi . Virus is cleared at a rate ci . The term D(VU −VL) represents viral
movement through diffusion. If there is more virus in the URT than the LRT, virus will
leave the URT and move to the LRT; while if there is more virus in the LRT, virus will
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move in the other direction. The term νVL represents upward movement of the virus
through mucociliary clearance. An ODE model consisting of three respiratory tract
compartments was previously proposed and analyzed (Reperant et al. 2012). However,
that model did not consider specific transport mechanisms between the compartments.

We use a simplified model of infection within each compartment in order to min-
imize the number of free parameters and focus on transport mechanisms, but more
realistic models are available. For example, transitions between the eclipse and infec-
tious compartments aremost likely not exponentially distributed (Kakizoe et al. 2015).
Similarly, transitions between infectious dead cells are also likely not exponentially
distributed (Beauchemin et al. 2017), and models using other distributions have been
explored (Holder and Beauchemin 2011). The model also does not include an immune
response, either innate or adaptive. While some of the effect of the immune response
can be implicitly modeled by changing parameter values (a larger value of viral clear-
ance can account for the effect of antibodies),more realistic viral dynamicsmodels that
include an immune response are available and can be considered (Dobrovolny et al.
2013; Cao and McCaw 2017; Yan et al. 2017). Implications of these simplifications
are considered in the discussion.

2.2 Animal infection experiments

Data from infections in ferrets was collected from the literature (Prince and Porter
1976). Ferrets were infected intranasally with 3.6 × 103 pfu of RSV. At intervals
after infection, animals were sacrificed and lung and nasal tissues were separately
homogenized. Virus in lungs and nasal tissues was measured by plaque assay in HEp-
2 cells. Data was extracted from the original publications using WebPlotDigitizer
(https://automeris.io/WebPlotDigitizer/).

2.3 Pediatric infection

Data from pediatric infections was provided by Janssen R&D Belgium. RSV was
diagnosed upon presentation at a doctor or hospital with viral titer measurements and
symptom scores taken daily from that point until resolution of the infection.

2.4 Fitting experimental data

We implemented a Bayesian approach via Markov Chain Monte Carlo (MCMC) to
estimate parameters. Least-squares estimates were used as the initial estimates for our
implementation of the Bayesian approach (Worden and Hensman 2012). The sum of
squared residuals (SSR) in this case contains two parts. For the animal studies, virus
in the URT was fit to nasal viral data while virus in the LRT was fit to lung viral data,
with both parts included in the calculation of SSR. For the pediatric study, virus in the
URT was fit to viral titer measurements while the virus in the LRT was scaled and fit
to the symptom score. All the model parameters were assumed to have uniform prior
distributions. Uniform prior distributions are commonly used when there is not avail-
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able information for the priors (Parkinson et al. 2006). We use the Matlab gwmcmc
function, which is an implementation of the Goodman and Weare affine invariant
ensemble MCMC sampler (Goodman and Weare 2010), to implement MCMC esti-
mation. This function requires that we initialize the ensemble of walkers in a small
Gaussian ball around the initial guess. In our work, we decided to use a Gaussian-type
likelihood function because it is the method of choice found in the literature and has
desirable asymptotic properties (Stoffer and Wall 1991). Minimizing the proposed
likelihood function minimizes the difference between the viral related data corre-
sponding to both tracts and the prediction produced by our proposed diffusion model.
Furthermore, under some conditions minimizing a Gaussian likelihood is equivalent
to the least squares method. Posterior distributions were determined using 20 walkers,
10,000 samples, a burn-in of 1000 samples and thinning by taking every 10th sample.

For the fits, we assumed that the initial number of target cells in both compartments
was one and that the infection was initiated with some initial amount of virus in the
upper compartment (to be fit). The initial number of eclipse and infectious cells was
assumed to be zero. Note that this assumption results in reporting of cells (in any
compartment) as proportions, rather than total number of cells. We also assumed that
parameters describing host-virus interactions (p, β, c, k, δ) were the same in both
compartments. While this is an oversimplification, there is not enough data to identify
all the parameters. Fits of the ferret data where we have relaxed this assumption and
allowedβ and p to differ between theURTandLRTare presented in the supplementary
material.

3 Results

3.1 The roles of advection and diffusion

In our initial investigation of the model, we assume that infection dynamics are the
same in both compartments (i.e all the parameters have the same value) and examine
the dynamics over a range of values for the diffusion and advection parameters (D
and ν). The parameters used for this investigation are taken from Baccam et al. (2006)
and describe in vivo influenza infection. Parameters are given in Table1. We assume
that there are 4.0 × 108 cells in each compartment and that the infection starts in the
URT with an initial viral inoculum of 7.5× 10−2 TCID50/mL. We then explore how
the infection changes as we vary diffusion and advection constants.

Table 1 Parameters for general
investigation of the two
compartment model, taken from
Baccam et al. (2006)

Parameter Value

β 3.2× 10−5 mL/TCID50 day
−1

p 4.6× 10−2 TCID50/mLday−1

k 4.0/day

δ 5.2/day

c 5.2/day
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Fig. 1 Effect of advection and diffusion in the two compartment model. The top row shows the peak viral
titer in the upper compartment (left) and in the lower compartment (right). The bottom row shows the
duration of the infection (time spent above 101 TCID50/mL) in the upper compartment (left) and in the
lower compartment (right). The line indicates the boundary where R0L = 1. Note that the colorbar scale
on the upper left figure differs from the scale on the other three figures (color figure online)

In Fig. 1, we show the peak viral titer in the upper compartment (left) and in the
lower compartment (right) in the top row and the duration of the infection in the upper
compartment (left) and in the lower compartment (right) in the bottom row. When
the advection is high and diffusion is low (top left corner of each plot), there is no
infection in the lower compartment (peak titer and duration in the lower compartment
go to zero). The advection is strong enough to clear away any virus that manages to
diffuse down to the lower compartment. When advection is not quite strong enough to
clear away the virus in the lower compartment, we see a small region of longer lasting
infections (dark red region). In this region, diffusion is low, but advection is not quite
strong enough to clear all the virus from the lower compartment, so there is a delay in
spreading the infection from the upper compartment to the lower compartment. Once
the infection has been initiated in the lower compartment, the strong advection sweeps
much of the virus to the upper compartment, slowing growth of the infection in the
lower compartment, but also preventing the decline of virus in the upper compartment.

This is shown more clearly in Fig. 2 where we show viral time courses for fixed
diffusion and three different values of advection. The left-most graph shows the viral
load in the URT (black line) and the LRT (red line) in the case of low advection.
The infection starts in the URT and virus diffuses to the LRT where it starts another
infection with some time delay. Virus from the infection in the LRT is moved back up
to the URT, causing a second peak in the URT viral titer. Both infections clear when
target cells are consumed in both compartments. The central graph shows the viral
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Fig. 2 Effect of advection on viral kinetics. The diffusion parameter was fixed to D = 10−2/day. Low
advection (ν = 10/day) causes a delayed infection in the LRT which pushes extra virus into the URT
causing a secondary viral peak (left). Slightly higher advection (ν = 100/day) causes a slow-growing
infection in the LRT with viral levels remaining high in the URT because virus is moved upwards (center).
High advection (ν = 1000/day) prevents wide-spread infection of the LRT since any virus in the LRT is
quickly moved up to the URT

load in the case of advection in the “long-lasting” zone. In this case, advection is strong
enough to move lots of virus from the LRT to the URT, but not quite strong enough
to prevent infection. The infection consumes the cells in the LRT slowly, leading to
a long-lasting infection in the LRT. Since advection is strong, viral load in the URT
also remains high, not because of continuing infection in the URT, but because virus
is swept up from the LRT. The right-most graph shows the viral titer in the case of
high advection. Here the advection is strong enough to remove any virus from the LRT
before it can take hold and cause an infection.

We can determine the boundary for spread of the infection into the LRT by exam-
ining the basic reproductive number for this model which is given by

R0 = D(D + ν)

(D + cU )(D + cL + ν)
+ pLβLTL

δL(D + cL + ν)

+ pUβUTU
δU (D + cU )

− pL pUβLβUTLTU
δLδU (D + cL + ν)(D + cU )

(2)

The first term of this equation represents the ratio of flow of virus into the two com-
partments to the flow of virus out of the two compartments. The second term is the
basic reproductive number of the LRT and the third term is the basic reproductive
number of the URT. When the basic reproductive number is greater than 1, the infec-
tion spreads, but if R0 is less than one, the infection is suppressed. Note that this is
the basic reproductive number for the full model, but if we want to know whether the
infection will spread in the LRT, we need to consider the basic reproductive number
for the LRT only,

R0L = pLβLTL
δL(D + cL + ν)

. (3)

Growth of the infection in the LRT will occur if R0L > 1, so the boundary is given by

ν = pLβLTL
δL

− D − cL (4)
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Fig. 3 Fits of the model to RSV infections in ferrets. Black squares indicate viral titers measured from nasal
samples while red squares indicate virus measured in the lungs. Black and red lines show the model best
fit curves for the URT and LRT, respectively (color figure online)

This boundary is shown in Fig. 1. Note that the region of long-lasting infections lies
along this boundary when R0L is slightly greater than 1.

3.2 Animal infections

We fit the model to data from RSV infection of ferrets (Prince and Porter 1976).
Experimental data and model fits are shown in Fig. 3 with the corresponding best fit
parameters given in Table2 and posterior distributions given in the supplementary
material. The median clearance rate is similar to the RSV clearance rates found for
humans (González-Parra and Dobrovolny 2015, 2018b) and African green monkeys
(AGM) (González-Parra and Dobrovolny 2018a, b), while the eclipse duration (1/k)
and the infectious cell lifespan (1/δ) are both somewhat shorter than those found
for humans and AGM (González-Parra and Dobrovolny 2015, 2018a, b). For most
animals, the model fits the data reasonably well, although it has trouble fitting those
animals for which viral peak in the URT and LRT do not occur at the same time. We
find that in all but one case (Animal 6), the diffusion rate is slower than the advection
rate, so there is net movement of the virus upwards. This is seen in low viral titers in
the LRT.

3.3 Pediatric infections

Since pediatric patients are particularly susceptible to LRT infections from RSV (Nair
et al. 2010; Forster et al. 2004), we also fit the model to data from RSV infections in
pediatric patients. In this case, we did not have viral titer measurements from the LRT
so we used the acute respiratory infection (ARI) symptom score as a proxy. The ARI
assesses the severity of several respiratory symptoms. We assumed that the ARI score
was proportional, with proportionality constant α, to the log of the viral load in the
LRT. The model fits are shown in Fig. 4 and the corresponding parameter estimates
are shown in Table3 with posterior distributions for all parameters included in the
supplementary material. We see that the fit for one of the pediatric patients (Patient
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Table 2 Best fit parameters for model fits to RSV infections in ferrets

Parameter p (/h) β (/h) c (/h) 1/δ (h) 1/k (h)

Animal 1 4.0× 107 6.4× 10−8 0.61 0.28 0.51

Animal 2 2.4× 105 1.0× 10−5 0.042 2.9 2.9

Animal 3 9.0× 104 4.4× 10−6 0.12 8.1 9.3

Animal 4 3.0× 107 1.9× 10−8 0.35 1.1 0.66

Animal 5 5.5× 106 7.7× 10−8 0.17 2.3 4.5

Animal 6 1.9× 108 1.6× 10−7 44 4.9 4.7

Animal 7 4.1× 105 1.9× 10−6 0.074 2.2 1.2

Animal 8 8.7× 104 1.9× 10−6 0.14 7.2 0.26

Median 3.0× 106 1.0× 10−6 0.15 2.6 2.0

Parameter D (/h) ν (/h) D/ν V0 (pfu/g) SSR

Animal 1 0.11 2.3 0.048 29 46

Animal 2 5.7× 10−6 0.31 1.8× 10−5 9.0× 10−5 21

Animal 3 0.29 2.0 0.15 0.030 35

Animal 4 0.49 18 0.028 550 15

Animal 5 0.0022 14 1.5× 10−4 9.2× 10−5 11

Animal 6 0.46 0.018 26 0.12 19

Animal 7 0.013 39 3.3× 10−4 3.5× 10−5 14

Animal 8 0.021 83 2.5× 10−4 1.0× 10−3 20

Median 0.067 8.2 0.014 0.016 20

Posterior distributions for all parameters are in the supplementary material

2 4 6 8 10 12 14 16 18 20
Time (d)

100

102

104

106

108

1010

V
ira

l t
ite

r (
pf

u/
m

L)

URT
LRT

Patient 1

2 4 6 8 10 12 14 16 18 20
Time (d)

100

102

104

106

108

1010

V
ira

l t
ite

r (
pf

u/
m

L)

URT
LRT

Patient 2

2 4 6 8 10 12 14 16 18 20
Time (d)

100

102

104

106

108

1010

V
ira

l t
ite

r (
pf

u/
m

L)

URT
LRT

Patient 3

Fig. 4 Fits of the model to RSV infections in pediatric patients. Black squares indicate viral titer measure-
ments from patient nasal swabs. Red squares indicate the ARI score scaled by a factor of α. Black and red
lines indicate the model best fit curves for the URT and LRT, respectively (color figure online)

1) suggests that this patient is in the region where advection is not strong enough to
fully clear virus from the LRT which leads to a long-lasting infection.

4 Discussion

In this paper, we describe a mathematical model that separately considers infection in
the URT and LRT.While not a full spatiotemporal model of respiratory tract infection,
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Table 3 Best fit parameters for model fits to RSV infections in pediatric patients

Parameter p (/h) β (/h) tinf (h) c (/h) 1/δ (h) 1/k (h)

Patient 1 6.5× 106 1.9× 10−6 0.40 0.0029 14 21

Patient 2 1.2× 1011 1.6× 10−10 0.32 3.2 6.2 4.8

Patient 3 3.2× 1010 3.7× 10−9 0.13 26 13 12

Parameter D (/h) ν (/h) D/ν α V0 (pfu/g) SSR

Patient 1 8.1× 10−5 20 4.0× 10−6 0.20 0.0079 0.76

Patient 2 0.12 78 0.0015 0.28 120 2.6

Patient 3 0.48 0.90 0.53 0.35 0.27 1.4

Posterior distributions for all parameters are included in the supplementary material

this simplified model allows examination of the roles of advection and diffusion in
allowing spread of infections to the LRT. We found that this model predicts long-
lasting viral infections in cases where the advection is not strong enough to fully
prevent infection in the LRT by sweeping all virus out of the LRT. Advection cannot
be so weak, however, that a homeostatic balance is maintained between virus in the
LRT and URT. Note that we observe this change in viral kinetics without assuming
that there are differences in the virus-host interactions in the LRT and URT.

There is evidence that mucus velocity is lower in small children (Sturm 2012;
Puchelle et al. 1979) and that it decreases again in the elderly (Grubb et al. 2016; de
Oliveira-Maul et al. 2013; Ho et al. 2001). These two populations are also the ones that
are particularly susceptible to LRT (Naorat et al. 2013; Kaneko et al. 2001; Shi et al.
2015; Atwell et al. 2016; Hall et al. 2001; Takeyama et al. 2016; Park et al. 2017). Since
diffusion rate is determined by particle size, temperature, and fluid viscosity (Cush
et al. 1997), all of which do not vary with age, our model suggests that differences
in susceptibility to LRT could be due to changes in the advection rate. The lowered
advection rate in these two populations might land them in the region where virus is
not only able to move down to the LRT to establish an infection, but once there, will
cause a long-lasting infection. Other respiratory viruses also appear to be more likely
to cause LRI in children and the elderly (Kusel et al. 2006; Wolf et al. 2006; GBD
2017), possibly due to the lowered advection rate of these two populations. Other
causes of the increased susceptibility to LRI have also been examined. Some studies
have cited differing immune response as a possible contributor to LRI (Zhao et al.
2017; Laham et al. 2004; Moore et al. 2013), suggesting that the weakened immune
response in small children (Ruckwardt et al. 2016; Tregoning and Schwarze 2010)
and in the elderly (Walsh et al. 2013) allows for viral spread to the LRT.

While our model is highly simplified, using only two compartments to represent
spatial distribution, it does include two distinct transport mechanisms, allowing for
evaluation of the role of each mechanism in the spread of virus. Partial differential
equation (PDE) models would allow for more detailed examination of spatial spread
of virus, perhaps pinpointing how far down the respiratory tract virus can spread as
diffusion and advection are varied. While PDE models have previously been used to
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study the spatial spread of virus (Bocharov et al. 2016;Holder et al. 2011a, b), they have
so far only included diffusion as a transport mechanism. An additional simplification is
the use of continuous ordinary differential equations to model an inherently stochastic
system (Yan et al. 2016; Bai and Allen 2019). A stochastic implementation of the
model would essentially blur the hard boundary for the onset of LRI with changes in
advection rate and would allow calculation of the probability of LRI given a particular
advection rate.

A drawback of the work presented here is the limited amount of data available to
test themodel. Few experiments measure viral titer in the URT and LRT separately, but
viral titer time courses alone are insufficient to allow for identifiability of all parameters
of even a basic viral dynamics model (Miao et al. 2011). Our parameter correlation
plots (supplementary material) indicate that even with the limiting assumption that
infection parameters are the same in the two compartments, parameter correlations
exist that hamper our ability to uniquely identify all parameters. Additional data that
would enhance our ability to uniquely identify parameters are cell measurements in
the URT and LRT. While difficult, spatially resolved infected cell time courses have
been measured in mice (Manicassamy et al. 2010; Ueki et al. 2018; Fukuyama et al.
2015) and could help produce more reliable parameter estimates.

Ourmodel is limited in other ways.Whilewe have the flexibility to include different
virus-host interactions in the LRT and URT by assuming different model parameter
values for the two compartments, the results presented here have all assumed that virus-
host interactions are the same in the two compartments. This was done to explicitly
isolate the effect of the two transport mechanisms, but was also necessitated by the
limited experimental data. In reality, differences in virus-cell interactions have been
observed between cells taken from the URT and those taken from the LRT (Guo-Parke
et al. 2013; Spann et al. 2014). Additionally, distributions of different cell types are
know to vary as we move from the URT to the LRT (Crystal and West 1991), which
means that the number of available target cells as well as the average distance between
target cells changes along the respiratory tract. This will also likely alter infection
dynamics along the respiratory tract. As mentioned in the methods section, our model
also does not describe transitions from the eclipse phase to the infectious phase and
from the infectious phase to the dead phase in the most realistic manner (Kakizoe
et al. 2015; Holder and Beauchemin 2011; Beauchemin et al. 2017). While changes in
the distribution for the eclipse phase can have a large impact on predicted curves for
single cycle infections, the effect on multiple cycle infections, such as those shown
here, is not as drastic (Holder andBeauchemin 2011). Changes in the distribution of the
infectious phase alter the time course of the decay phase of multiple cycle infections
and predictions about the efficacy of antiviral treatment (Beauchemin et al. 2017).

Finally, our model does not explicitly include an immune response. Many models
have been proposed, at least for influenza, that contain various elements of the innate
(primarily interferon) response and adaptive (Cytotoxic T lymphocytes and antibod-
ies) response (Yan et al. 2017; Cao and McCaw 2017; Handel et al. 2018; Dobrovolny
et al. 2013). While some of the effect of the immune response is implicitly contained
in parameter estimates, inclusion of an explicit immune response in the model would
allow comparison of reduced immune response and reduced advection as mechanisms
causing LRI. We chose a simple viral model without an explicit immune response
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largely because we were trying to keep the number of free parameters to a minimum.
Since there are known differences in the immune response between LRT and URT
(Everard et al. 1994; Plotnicky-Gilquin et al. 2000; Sealy et al. 2017), addition of
an explicit immune response might require assumption of different immune response
parameter values in the URT and LRT. The data sets considered in this paper do
not include measurements of immune responses, making it difficult to estimate these
parameters. We expect that differences in the immune response between LRT and
URT will alter the prediction of this model that changes in advection are the pri-
mary drivers of LRI. An additional concern is that target cell limited models such as
the one used here have difficulty accurately predicting changes in viral load caused
by changes in initial viral inoculum (Li and Handel 2014; Hagenaars et al. 1976).
Changes in initial viral inoculum can also alter the strength of the immune response
(Handel et al. 2018), further compounding our ability to tease out the role of different
virus-host interactions in causing LRI. In addition to changing viral dynamics within
a compartment (Dobrovolny et al. 2013), models with an immune response alter pre-
dictions of antiviral treatment outcomes (Cao and McCaw 2017). Should we need to
investigate antiviral treatment strategies for LRT infections, a more detailed model
that includes the immune response and more realistic distributions for cell transitions
will be needed. In order for an expanded model to be useful, however, more data on
the immune response, as well as viral and cell dynamics, in both the URT and LRT
will be needed for proper parameterization.

Despite these shortcomings, this model allows for examination of the roles of
diffusion and advection in preventing or allowing LRI and provides a basis for further
study of spatiotemporal viral dynamics.
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