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The in vivo efficacy of 
neuraminidase inhibitors cannot be 
determined from the decay rates 
of influenza viral titers observed in 
treated patients
John Palmer1, Hana M. Dobrovolny2 & Catherine A. A. Beauchemin1,3

Antiviral therapy is a first line of defence against new influenza strains. Current pandemic preparations 
involve stock- piling oseltamivir, an oral neuraminidase inhibitor (NAI), so rapidly determining the 
effectiveness of NAIs against new viral strains is vital for deciding how to use the stockpile. Previous 
studies have shown that it is possible to extract the drug efficacy of antivirals from the viral decay rate 
of chronic infections. In the present work, we use a nonlinear mathematical model representing the 
course of an influenza infection to explore the possibility of extracting NAI drug efficacy using only 
the observed viral titer decay rates seen in patients. We first show that the effect of a time-varying 
antiviral concentration can be accurately approximated by a constant efficacy. We derive a relationship 
relating the true treatment dose and time elapsed between doses to the constant drug dose required 
to approximate the time- varying dose. Unfortunately, even with the simplification of a constant drug 
efficacy, we show that the viral decay rate depends not just on drug efficacy, but also on several viral 
infection parameters, such as infection and production rate, so that it is not possible to extract drug 
efficacy from viral decay rate alone.

Influenza is a viral infection of the upper respiratory tract that, even in it’s mild seasonal form, causes serious 
illness and death worldwide1. The rapid mutation rate of influenza virus2 along with occasional re-assortment 
events3 results in the emergence of new antigenic variants of influenza. The most popular antivirals currently 
used against influenza are neuraminidase inhibitors (NAIs). NAIs block the action of neuraminidase, an enzyme 
found on the surface of the influenza virus which is responsible for viral release from an infected cell4,5 causing 
virus to remain bound to the cell surface6. NAIs, particularly oseltamivir, are the antiviral of choice for pan-
demic stockpiles7 because resistance to NAIs remains low in circulating strains8,9 and they are effective against 
pH1N110, as well as avian influenza (H5N1)11,12. Given our reliance on NAIs and the rapid mutation of influenza 
into new strains, there is a need to develop methods to rapidly quantify the efficacy of NAIs against new strains 
of influenza.

There are a variety of techniques used to measure the susceptibilty of a viral strain to NAIs in vitro. Perhaps 
the most direct measure of susceptibility is through a neuraminidase inhibition assay which measures the drug’s 
effectiveness at inhibiting the neuraminidase activity of a particular viral strain13–16. The inhibition assay, unfor-
tunately, is not equivalent to measuring the drug’s effectiveness at inhibiting viral release during an infection. 
During an infection virus can be released from the cell without the presence of neuraminidase17–19, so we might 
expect the efficacy of NAIs at blocking an infection to be lower than the efficacy measured in an inhibition assay. 
To account for this, the efficacy of NAIs is sometimes measured through a reduction in viral yield20, cytopathic 
effect21,22, or plaque formation20,23. Knowledge of the within host antiviral efficacy will help in estimating the effect 
of NAI treatment at the population level, through the use of multiscale models24–26, allowing public health officials 
to manage their stockpiles more effectively.
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Influenza infections in humans add further complications. Variability in the metabolism and pharmacoki-
netics (PK) of drugs between individuals27 means that a given dose will have different efficacies in different 
patients. Thus there is a need to develop methods for determining the effectiveness of NAIs within a human host. 
Unfortunately, influenza infections are acute and peak quickly around 2 days post-infection. Therefore, charac-
terizing the kinetics of viral titer growth prior to peak is difficult and sometimes impossible as it requires frequent 
samples within the first 48 of infection, often before patients actually experience symptoms. It is somewhat easier 
to collect information about the viral titer decay phase which occurs either after the viral titer has peaked or after 
highly effective treatment sufficient to abrogate the infection is applied. Indeed, several studies have relied on viral 
measurements starting near or after the viral titer peak to assess the efficacy of NAIs in patients28–32.

Chronic infections such as those caused by HIV or hepatitis B and C are amenable to extraction of antivi-
ral efficacy from the chronic and relatively constant viral concentration and its ensuing decay following treat-
ment33–35. This is because the chronic phase corresponds to a steady state in the viral kinetics (VK) model and the 
viral titer decay caused by the disruption of that steady state due to antiviral therapy reduces to a function which 
depends only on the antiviral efficacy and viral clearance rate. Unfortunately, this does not hold in the acute phase 
of infection because in that phase, infection decay due to antiviral efficacy is dampened by the continued infection 
growth which characterizes this phase. Yet, perhaps some assumptions could be made here too which would allow 
us to extract this information from the viral titer decays or perhaps allow us to eliminate some VK parameters 
from consideration.

Further compounding the problem is the periodic nature of drug treatment. Oseltamivir, the most com-
monly used NAI, is taken as a pill twice a day which causes fluctuations in the concentration of oseltamivir in 
the body27,36. Many VK models simply ignore these fluctuations and assume a constant drug concentration when 
drug is applied26,37. The short duration of a seasonal influenza infection means that the fluctuations in drug con-
centration are on a similar time scale as the infection itself, so it is not clear if the assumption of a constant drug 
concentration is valid.

In this paper, we use a mathematical model of the within host dynamics of influenza to examine the possi-
bility of extracting drug efficacy from the viral titer decay rate. We first show that viral titers produced with a 
time-dependent drug concentration can be reproduced with the assumption of a constant drug concentration and 
that the constant drug assumption results in viral titers with the same viral decay rate as the viral titers produced 
with a time-dependent drug concentration. We then assess whether constant drug efficacy can be extracted from 
viral titer decay rate by performing a sensitivity analysis. We find, unfortunately, that the viral decay rate depends 
on many of the model parameters and we cannot extract drug efficacy without additional data to determine other 
infection parameters.

Results
Fitting treated viral titers. Determining a time-dependent treatment efficacy is difficult particularly given 
the sparsity of experimental viral titer data. To simplify the problem, we would like to be able to assume that drug 
efficacy is constant over the course of the infection, but because influenza infections are of short duration (typi-
cally 2–4 symptomatic days), oscillations in drug concentration are approximately on the same time scale as the 
infection. This is not the case for HIV and HCV where this type of analysis has proved useful33–35 — these infec-
tions last months or even years, so the small oscillations in drug concentration over a few hours are not significant 
and assuming a constant drug treatment efficacy is reasonable. This might not be the case for a rapidly changing 
infection such as influenza, so we must first determine whether we can reproduce the viral titer produced by a 
time-dependent drug treatment with the assumption of a constant drug treatment.

We generate viral titers using time-varying PK/PD models, Eq. (4), with treatment initiated at 28 h. We chose 
28 h post-infection, the typical treatment administration time used in human drug trials38,39, as it is thought to 
be a few hours after the onset of symptoms and represents a typical time when patients might seek treatment. 
We then fit the viral titers assuming a constant value for the drug. We leave the constant drug value, Dcst, and the 
time of administration of the constant drug, ton, as free parameters. We explore a range of treatment regimens by 
varying the period of dosage, τ, from 0 (theoretical continuous infusion) to 48 h (every two days), and varying 
the true intake dose, Dadmin, from 0 to 200 mg. The typical treatment regimen for oseltamivir is 75 mg twice a day 
(τ =  12 h). Figure 1 shows the viral titers generated with a time-dependent drug concentration and our fits using 
the assumption of a constant drug concentration.

The viral titer curves obtained by assuming a constant antiviral concentration provide a good approximation 
of those obtained with the full PK/PD model. There is some discrepancy at high drug doses and large dosage 
periods (large Dadmin and τ) where the oscillations in drug concentration create oscillations in the viral titer. The 
assumption of a constant drug cannot reproduce these oscillations, so the fits in this range are not as good. Even 
during these oscillations, however, our fits are within the typical error of viral titer measurements40. It is also 
important to note that viral titers in human trials are typically sampled daily or bi-daily and so these oscillations 
likely would not be noticed in clinical trial data. There is also some discrepancy near the application time of the 
drug. In order to match the effect of the drug over the remainder of the viral titer curve, the constant drug needs 
to be applied at a slightly different time than the time-dependent drug. This leads to a small, experimentally indis-
cernible difference in the viral titer near the administration time.

Figure 2 illustrates the goodness of our fits by examining the sum of square residuals (SSR) over the full range 
of dose concentrations and periods (Dadmin and τ). The absolute value for SSR is dependent on the number of data 
points used in the fit (which was kept constant for all fits) and so the value itself is meaningless, but we can use 
it as relative measure to determine where we have achieved better fits. Again, the region of high doses and large 
periods (large Dadmin and τ) has larger SSR as oscillations in drug concentration manifest themselves in the viral 
titer and our constant drug assumption begins to break down. This region does not include the two most common 
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Figure 1. Comparing the effect of a constant vs time-varying antiviral concentration. Viral titers and drug 
concentrations for infections treated with a time-varying drug concentration, D(t) from Eq. 4 (black lines), and 
the best fit assuming a constant drug concentration (red lines). The dashed line shows the untreated infection.

Figure 2. Evaluating the accuracy of assuming a constant drug concentration. The goodness-of-fit (SSR) 
between viral titers resulting from PK modelling of the time-varying drug concentration and a fit of these titers 
using a constant drug concentration, Dcst, administered at fixed time, ton, when (Left) Dcst and ton are fitted; or 
(Right) ton =  tadmin and Dcst is computed using Eq. (1).
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treatment regimens for oseltamivir: 75 mg dose once daily (τ =  24 h) for prophylactic therapy or 75 mg twice daily 
(τ =  12 h) for treatment41.

Mapping pharmacokinetic parameters to constant parameters. We determined that assuming a 
constant drug concentration can provide a good approximation to the full PK model. We must now identify rela-
tionships to map the PK parameters (Dadmin and τ) to the constant drug parameters (Dcst and ton). Figure 3 shows 
the relationships between the fitted constant parameters (Dcst and ton) and the PK parameters (τ and Dadmin). 
While there are slight deviations, the constant drug concentration, Dcst, appears to be approximately inversely 
proportional to the dosage period, τ, and linearly proportional to the real dose, Dadmin. An expression relating 
Dcst to the PK parameters can be derived by using an approximation of the full PK equation. A constant drug can 
be considered equivalent to a dosage period of τ =  0, i.e. no time elapsed between doses as though the drug was 
continuously applied. Using a Taylor expansion of Eq. (4) about τ =  0, we find an approximate expression for Dcst,

τ
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This equation confirms the relationships seen in Fig. 3 (left column) for Dcst, where the dotted lines give the 
values of Dcst predicted by Eq. 1. The approximation works best when τ and Dadmin are small but still provides a 
good estimate (within ~10 mg) of Dcst at high values of both τ and Dadmin.

In contrast, Fig. 3 (right column) reveals no clear relationship emerging between ton and either Dadmin or τ, 
showing small (typically less than 2 h), stochastic variations of ton about the true drug administration time, tadmin.  
The level of stochasticity in the fitted values of ton are likely an indication that the infection kinetics are not par-
ticularly sensitive to ton, with several nearby values providing equally good fits, leaving the fitting algorithm to 
settle on somewhat random neighbouring values. We opted for the simplest assumption, ton =  tadmin, since ton 
appears to fluctuate about this value as Dadmin and τ are varied.

We now have approximations that allow us to map Dadmin and τ to Dcst and ton. Figure 4 shows the viral titers 
and drug concentrations generated by assuming a constant drug concentration determined by Eq. 1 administered 
at ton =  tadmin (green line). The constant drug approximation produces viral titers very close to the viral titers 
generated with the full PK drug model (black lines). The approximations work well when τ and Dadmin are small 
although there is a slight shift in the time at which the viral titer peaks due to the assumption of a constant ton for 
all Dadmin and τ.

We calculated the SSR for the viral titers generated with our approximations (Fig. 2, right). For large τ, we still 
have the problem of oscillations in the PK viral titer that cannot be replicated by a constant drug concentration. 

Figure 3. Relationship between parameters of the PK model and those of the constant drug concentration 
approximation. Relationships between Dcst and τ (upper left), ton and τ (upper right), Dcst and Dadmin (bottom left), 
and ton and Dadmin (bottom right). Solid lines indicate actual values determined from fitting; dotted lines indicate 
our approximations using the constant drug concentration predicted by Eq. 1 and a constant value for ton.
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The approximation has an additional problem when Dadmin is large and the drug concentration takes a long time 
to reach steady state. In this case, the assumption that ton =  tadmin fails as Dcst should be applied after Dadmin to 
account for this prolonged ramp up time. These discrepancies, however, would not be experimentally distinguish-
able from the PK viral titers due to the inherent error of viral measurement40.

While the approximations do not always correctly reproduce every point on the time course, they do appear to 
accurately reproduce the general shape of the infection. In particular, we are interested in accurately reproducing 
the slope of the decay phase. Figure 5 shows the percent error in the decay rate. We see that the error is very small 
over a wide range of doses and dose timings, although there is a small region of more significant error for τ <  6 h. 
In this region, the constant drug assumption leads to a downslope estimate that is smaller than the actual slope so 
that analysis performed with the constant drug assumption would underestimate the actual efficacy of the drug. It 
is also unlikely that patients would take pills more often than four times per day, so available clinical trial data will 
likely be in the region of dose and dose timing where a constant drug assumption leads to a very good estimate of 
the actual viral decay rate.

Determining drug efficacy from viral decay. We have now shown that we can reproduce viral titers 
produced with time-dependent drug treatment under the assumption of a constant drug concentration. More 
importantly, we have shown that the assumption of a constant drug concentration accurately estimates the slope 
of the decay phase of viral titer over a range of doses and dose timings. Thus, we can assume a constant drug 
concentration when attempting to determine the drug efficacy of NAIs. We can now investigate the effect of 
treatment with oseltamivir on viral titer decay. In our viral kinetics model, we incorporate the effect of treatment 
with oseltamivir as reducing the production rate of virus by infectious cells such that p →  (1 −  ε)p with ε ∈  [0,1] 

Figure 4. Viral titers and drug concentrations for infections treated with time-varying drug D(t) from 
Eq. 4 (black lines), and the viral titers and drug concentrations for infections treated with a constant drug 
concentration approximation from Eq. 1 and ton = tadmin. The dashed line shows the untreated infection.
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representing the antiviral efficacy. In the model, ε is initially set to zero and is instantaneously set to the desired 
efficacy at the time of treatment initiation and maintained constant from that time on.

When assessing data from clinical trials, many factors and parameters are unknown. For example, an infec-
tion with a given influenza strain within a given patient will be characterized by a set of viral kinetic parameters 
(e.g., virus production and clearance rate, virus infectivity) which will differ across influenza strains and from 
patient-to-patient42,43. Additionally, in the case of recruitment studies, the time at which patients became infected 
is not known and cannot be determined accurately. It is important, therefore, to evaluate to what extent these 
unknowns can affect the observed viral titer decay rates from which we hope to determine the efficacy of the 
antiviral treatment received.

If we can assume that viral load is proportional to infectious cells (V =  kI), then the equation for virus can be 
solved directly to yield
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While k remains unknown and likely depends on other viral kinetic parameters, c could potentially be esti-
mated from mock infection experiments43,44, so at least a relative efficacy could be determined from the slope of 
viral decay. This means we need to determine when the assumption of viral load and infectious cell proportional-
ity holds. While virus is proportional to the number of infectious cells for some parts of the infection, this is not 
a good approximation for other parts of the cycle, as shown in Fig. 6. In the early stages of infection, there are not 
yet any infectious cells, so the ratio V/I is infinite. V/I decreases rapidly as the number of infectious cells increases, 
but it doesn’t reach a constant until about 12 hours into the infection. This constant phase lasts until about 3 days 
post-infection at which point the number of infectious cells starts to decrease again (infectious cells die off faster 
than virus is cleared), causing V/I to rise again. In the case of influenza A virus infections in vitro, it is known that 
the decay rate of virus is not proportional to that of infectious or infected cells. That is because the infectious cell 
lifespan is normally rather than exponentially distributed whereas the lifespan of infectious virus is exponentially 

Figure 5. Percent error in decay rate when using a constant drug concentration determined by Eq. (1) 
 and applied at a fixed ton = tadmin to approximate viral titers produced with a time-dependent drug 
concentration.
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Figure 6. Ratio of viral titer to infectious cells. The ratio of viral titer to infectious cells over the course of an 
influenza infection.



www.nature.com/scientificreports/

7Scientific RepoRts | 7:40210 | DOI: 10.1038/srep40210

distributed45. Note that the duration of the roughly 2.5 day period when V/I is constant will depend on the values 
of β, p, c, τE, and τI, so that in practice, we cannot be entirely sure of the time period when this analysis is appli-
cable. In the case of challenge studies, when time of infection is well-known, it might then be possible to extract 
efficacy from viral decay, if we are certain that drug treatment is initiated during the phase when V/I is constant. Note 
that we cannot use this simplifying assumption for treatment initiated early in the infection when V/I varies rapidly.

For patients whose time of infection is not known, however, the situation is not so clear-cut. Even supposing 
that we are certain of when the period of constant V/I starts and ends, we cannot tell whether we are applying the 
drug during this time period. Patients typically start to experience symptoms about 1–2 days post-infection46,47. 
By the time they get to a doctor and fill a prescription, we can expect them to actually start treatment about 
2–3 days post-infection, possibly during the time when V/I is rising again.

To investigate how limiting this assumption might be, we examined the viral titer time courses obtained under 
a variety of antiviral efficacies applied at various times post infection (Fig. 7). We also explore the effect of varying 
viral infection parameters by varying each parameter by a factor of 10 above and below (with the exception of 
τE which is varied by a factor of two above its base value to prevent unrealistic viral titers) its base value. Note 
that we have performed the same analysis using a simpler model of influenza infection and found similar results 
(supplementary material).

We see that viral titer decay is steepest when treatment is applied near viral titer peak. This is because prior to 
viral peak, viral titer decay due to the suppression of the infection by the antiviral is partly countered by a weak-
ened but persistent infection progression. In contrast, after viral titer peak, viral titer decay occurs irrespective 
of antiviral treatment. In that phase, decay due to treatment is more pronounced than in the period prior to viral 
titer peak because at that point all susceptible cells have been consumed and treatment only suppresses viral pro-
duction in already infected cells which are continuously being lost. In some cases, viral infection parameters are 
such that even in the presence of treatment, viral titer growth is only subdued and does not immediately result in 
viral titer decay, but instead results in viral titer growth for a time. Figures showing the effect of antiviral treatment 
on infectious and eclipse cells are included as supplementary material.

Since time of viral titer peak seems to play an important role in viral titer decay rates, we also explored how 
the latter varies as a function of the treatment time relative to the time of viral titer peak. In Fig. 8, we show the 
viral titer decay rate, determined by performing a linear regression of ln(V) versus time, for each treatment inter-
vention applied at various time relative to viral titer peak. Viral titer decay is steeper when treatment is applied 
after viral titer peak than prior to it. There is a stronger dependence of viral titer decay on drug efficacy when 
treatment is started well before the peak. When treatment is applied near the peak this difference becomes smaller 
and the rate of viral titer decay becomes mostly independent of drug efficacy. In fact, closer examination of the 
asymptotic value of the viral decay rate after viral titer peak reveals it is equal to the viral clearance rate used in 
our model, namely 0.22 h−1. The viral decay rate after viral titer peak is due solely to the clearance of the virions 

Figure 7. Effect of infection parameters on viral titer decay. Oseltamivir treatment is applied at various times 
post infection and at different efficacies. Top graph shows the effect of different treatments on the base viral 
infection parameters. The effect of varying the base infection parameters is also explored by either decreasing 
(bottom row) or increasing (upper row) viral production rate (p) (first column), infection rate (β) (second 
column), viral clearance rate (c) (third column), eclipse duration (τE) (fourth column), infectious lifespan (τI) 
(last column) by 10-fold (except τE, see text) compared to the base parameters.
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and not to neuraminidase inhibitor treatment whose inhibition of viral production has become ineffective since 
most cells have already died. This means that antiviral efficacy cannot be determined from viral decay rates for 
treatment initiated near or after the peak of the infection. Unfortunately, even if we are confident that treatment 
was initiated before the viral titer peak, our investigation reveals that the rate of viral titer decay is dependent on 
all infection parameters. Thus, a higher viral decay rate in one patient could be attributed to either a higher anti-
viral efficacy in that patient or a lower value in one or more of the viral growth parameters in that patient possibly 
due to a more effective immune response, or both; these three possibilities are indistinguishable from inspection 
of viral titer decay alone.

Discussion
Motivated by studies of HIV and HCV that used mathematical modelling to extract drug treatment efficacy from 
viral decay rates33–35, we investigated the possibility of extracting drug treatment efficacy for influenza infections. 
Determining drug efficacy for influenza is a slightly more challenging problem because of the short duration and 
rapidly changing viral titer of influenza. HIV and HCV are chronic infections and drug treatment is typically 
applied when the infection is in a stable steady state, making it possible to use simplifying assumptions and per-
form a mathematical analysis of the system. Influenza, on the other hand, does not reach a steady state making 
mathematical analysis of drug treatment more complex.

One key assumption used in the HIV and HCV analysis is that drug treatment is constant over time. While 
this is also a common assumption in modelling of influenza infections26,37,48, it has not been determined whether 
this is actually a reasonable assumption. The typical treatment for influenza involves taking a pill twice a day. This 
leads to oscillations in the drug concentration. In long-lasting infections such as HIV and HCV, such oscillations 
are short compared to the duration of the infection. Influenza, however, typically lasts 7 d, so 12 h oscillations in 
drug concentration might be significant. Herein, we derive an expression (Eq. 1) for converting the time-varying 
infection dose into a constant drug concentration. We find that with this expression, the approximation of a 
constant antiviral concentration is appropriate as long as the oscillations in drug concentration are insufficient 
to create oscillations in the treated viral titers. In particular, we are able to accurately estimate viral decay rate 
over a broad range of doses and timings under the constant drug assumption. We do not, however, correctly 
reproduce the time of viral peak; the viral titer curves produced with our constant drug assumptions are shifted in 
time relative to the original PK viral titers. Our assumptions work best when the true dose (Dadmin) and the time 
elapsed between successive oral doses (τ) are not too large so that the time to antiviral concentration steady state 
is short. When the true drug concentration consists of a series of sparsely spaced spikes, then, not surprisingly, the 
assumption of a constant drug concentration does not accurately reproduce viral titer kinetics.

Since we found that assuming a constant drug concentration for modelling of influenza infections is a rea-
sonable assumption, we used the simplification of a constant drug assumption to assess whether it is possible to 

Figure 8. Effect of treatment delay on viral titer decay. Oseltamivir treatment is applied at various times 
post infection and at different efficacies. The effect of varying the base infection parameters is also explored by 
either decreasing (bottom row) or increasing (top row) viral production rate (p) (first column), infection rate 
(β) (second column), viral clearance rate (c) (third column), eclipse duration (τE) (fourth column), infectious 
lifespan (τI) (last column) by 10-fold (except τE, see text) compared to the base parameters.
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extract drug efficacy from the viral decay rate alone. A previous study derived an analytical expression for the 
viral decay rate of untreated influenza infections modelled using exponential transitions between cell states49. 
This study determined that the viral decay rate is determined by the smallest of c, 1/τI, or 1/τE. Our model is based 
on more realistic probability distributions for cell transitions50 which does not have this same dependency. Our 
application of drug also complicates the analysis since we are sometimes imposing viral decay when an untreated 
infection would still be growing. A simplifying assumption of viral load and infectious cell proportionality is pos-
sible for influenza, but our analysis showed that this assumption only holds for about 60 h during the course of the 
infection. Since we often do not know when the infection started, it is difficult to judge whether this assumption 
is valid for the patient we are assessing. However, the key point of our manuscript is not whether in theory the 
efficacy could be extractable provided that certain conditions are met. Rather, the key point is whether the efficacy 
of an antiviral drug can reliably be determined from viral titer decay alone. For example, viral titer decay alone 
cannot confirm (or deny) that V is proportional to I during said decay and assuming that it is would not be appro-
priate unless other knowledge/information is available (i.e. not just viral titer decay data alone). While others 
might have made this assumption in the past and might have claimed to have estimated antiviral efficacy via this 
assumption, then it is their claim that is too strong. That is, unless they provided additional evidence (i.e. beyond 
viral decay data alone) that I is indeed proportional to V during decay for their particular virus/host system.

Moreover, it is clear that the rate of decay of viral titer in this model is determined not only by drug efficacy, 
but also by the viral infection parameters and the time at which treatment is initiated. Similar parameter depend-
encies have been observed in chronic infections51 although for chronic infections it is often possible to estimate 
these parameters with data collected from the chronic phase of the infection. In the case of influenza, we often 
only have clinical data from the decay phase, so it is difficult to estimate infection parameters. This means that a 
larger viral decay rate in a patient could be attributed to either or both increased antiviral efficacy and decreased 
viral titer growth parameters. Thus, not surprisingly, antiviral efficacy cannot be determined from viral titer decay 
alone and requires knowledge of the parameters driving infection growth in each patient. To establish these 
parameters, viral titers at the early time of the infection (i.e., during viral titer growth) are required in sufficient 
number to determine the infection growth rate (i.e., at least 3 viral titer samples prior to viral titer peak to reason-
ably characterize the viral titer up-slope).

Another key concern in determining antiviral efficacy is distinguishing viral decay due to antiviral treatment 
from that due to the natural resolution of the infection. We found applying antiviral treatment later results in 
larger viral titer decay rates. Since influenza is an acute infection, it typically resolves on its own and the viral 
decay after viral peak occurs even in the absence of antiviral treatment. That natural viral decay rate is likely 
modulated by the strength of the immune response in clearing both infected cells and free virus. Therefore, viral 
titer decay in treated patients can be due to either or both natural resolution of the infection and the action of 
the antiviral. As such, even with a comprehensive, well-sampled, viral titer time course, it might not be possible 
to resolve antiviral efficacy in a given patient as it would be indistinguishable from natural infection resolution. 
Studies where decay phase of the viral load are used to examine the efficacy of NAIs28–32 are tacitly assuming that 
all their patients can be described with the same infection parameters, particularly that they would have the same 
natural decay rate in the absence of antivirals. This is not a reasonable assumption, and our study shows that even 
small variations in underlying dynamical parameters will alter the measured viral decay rate. We believe antiviral 
efficacy in treating influenza is best determined from massive sets of viral titers and would manifest therein as 
a statistically significant departure of the viral kinetic parameters of a treated group versus that of an untreated 
group. Perhaps sub-optimal treatment in some of the antiviral-treated group would help show a progression or 
shift in the viral kinetics parameter(s) from the placebo-treated to the effectively treated patient groups which 
could make a more convincing case for the efficacy of the antiviral in affecting that viral kinetic parameter.

Methods
Viral kinetic model. We use a modified version50 of the basic influenza infection model first presented in 
ref. 48.
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Target cells (T) are infected at a rate β/N, where N is the total number of cells, and enter the eclipse phase. Eclipse 
cells (E) are cells that have been infected by virus (V) but are not yet releasing any new virions. Infectious cells (I) 
are producing and releasing virus at a rate p. Infectious cells eventually stop producing virus (and/or die) and are 
removed from the system. Virus is removed at clearance rate c. Transition from eclipse to infectious is a proba-
bilistic process where PE(t) (or PI(t)) is the probability that the cell remains in the eclipse (or infectious) phase for 
a time t, and fE(t) is the associated probability density function. We model both transitions with normal distri-
butions having standard deviations σE or σI and average lifespans τE and τI. The use of the normal distribution is 
more biologically realistic than the exponential distribution tacitly assumed by ordinary differential equations, as 
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the normal distribution imposes a minimum length of time in which the cell must remain in that state and does 
not allow cells to remain in a particular state for excessively long times50.

We model the action of NAIs, which block viral release4,5, as reducing the production rate p. The drug is 
applied via the parameter ε(t), which is a number between 0 and 1 and represents the potentially time-varying 
efficacy of the drug. Viral kinetic parameters were taken from ref. 48 and are presented in Table 1.

Pharmacokinetic and pharmacodynamic models. Our aim is to determine whether the viral titer 
resulting from a time-varying drug treatment can be approximated by viral titers produced with the assumption 
of constant drug treatment. For this, we need a time-varying PK model to simulate time-varying drug treatment 
regimens. We use the following PK model to simulate the course of a time-varying drug regimen52,

τ
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where Dadmin is the dose of the pill administered in units of mg, τ is the time between doses, ka and ke are the drug 
absorption and elimination rates, respectively, and n is the number of doses administered. Time, t, is measured 
from the nth dose. We use the pharmacokinetic (PK) parameters for oseltamivir because it is the most commonly 
prescribed NAI53. The parameters were obtained from studies of oseltamivir PK54 and are presented in Table 1. 
Note that we are not trying to reproduce the full pharmacokinetics of oseltamivir, which as a prodrug would 
require a two compartment PK model55, but are trying to ascertain whether a time-varying drug regimen can 
reasonably be approximated by an assumption of a constant level of drug.

The drug efficacy used in the viral kinetics model is related to drug dose through the Emax pharmacodynamic 
(PD) model56,

ε
ε

=
+

t D t
D t

( ) ( )
( ) EC

,
(5)

max

50

where EC50 is the dose at which half the maximal effect is achieved and εmax is the maximum effect of the drug. 
Efficacy is between 0 and 1 and represents the fractional reduction in production from an untreated infection. For 
example, an efficacy of 0.4 reduces the viral production rate by 40%. In the case of a time-varying drug dose, and thus 
a time-varying drug efficacy, the effective production rate will also vary in time. Oseltamivir binds to and inhibits the 
activity of neuraminidase4,5, as the amount of drug available in the system varies with time, the number of bound, 
deactivated neuraminidase proteins will also vary, altering the viruses ability to release itself from the cell surface.

The EC50 for oseltamivir is dependent on the viral strain and so it can vary widely, from 0.0008–35 μ M57. We 
decided to use 0.5 μ M as it is approximately in the middle of this wide range. Note that we are using EC50 rather than 
IC50 because the viral kinetics model models the effect of the drug on the course of the infections and not inhibition 
of NA activity by the drug58. Drug efficacy is a unitless quantity so drug dose can be represented either as the oral 
dose or as the blood plasma concentration with no loss in generality as long as EC50 is represented in the same units. 
Since we are modelling in vivo human infections which are treated by giving pills with doses in milligrams, we con-
vert the EC50 to milligrams based on parameters from ref. 54 for ease of interpretation. There have not, to date, been 
any studies that have determined εmax for oseltamivir. Instead, we use the results of previous modelling studies of 
zanamivir (a drug in the same class as oseltamivir) treatment of influenza infections26,48 and set εmax =  0.98.

Parameter Meaning Value

Viral kinetic parameters

 β Infection rate 3.2 ×  10−5 d−1 ⋅  [TCID50/mL]−1

 p Production rate 4.6 ×  10−2TCID50⋅ d−1⋅ mL−1

 c Clearance rate 5.2 d−1

 τE Eclipse phase, mean duration 6 h

 σE Eclipse phase, standard deviation 1 h45

 τI Infectious lifespan, mean duration 12 h45

 σI Infectious lifespan, standard deviation 1 h45

Initial conditions

 T0 Initial number of target cells 4 ×  108cells

 E0 Initial number of eclipse cells 0 cells

 I0 Initial number of infectious cells 0 cells

 V0 Initial amount of virus 7.5 ×  10−2TCID50

Pharmacokinetic/pharmacodynamic parameters

 ka Drug absorption rate 0.46 h−1 54

 ke Drug elimination rate 0.11 h−1 54

 EC50 50% effective concentration 7.3 mg [see text]

 εmax Maximum inhibitory effect 0.98 [see text]

Table 1.  Parameters and initial conditions taken from ref. 48 unless otherwise indicated.
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